CSE 331
Software Design & Implementation

Hal Perkins
Fall 2015

Lecture 2 – Reasoning About Code With Logic
(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins)
Announcements

• Discussion board: be sure to post a reply to the welcome message
• Office hours doodle: add your preferences

• HW0 due tomorrow before class (10 am)
 – No late days / late assignments allowed this time

• Next few lectures: two presentations on the web
 – Powerpoint slides
 – Lecture notes
 Read both – they are complementary

• HW1 out now. Programming logic with no loops. Due in a week.
Reasoning about code

Determine what facts are true as a program executes
 - Under what assumptions

Examples:
 - If \(x \) starts positive, then \(y \) is 0 when the loop finishes
 - Contents of the array that \(arr \) refers to are sorted
 - Except at one code point, \(x + y == z \)
 - For all instances of \(Node \) \(n \),
 \[
 n.next == \text{null} \lor n.next.prev == n
 \]
 - ...
Why do this?

- Essential complement to *testing*, which we will also study
 - Testing: Actual results for some actual inputs
 - Logical reasoning: Reason about whole classes of inputs/states at once (“If $x > 0$, …”)
 - *Prove* a program correct (or find bugs trying)
 - Understand *why* code is correct

- Stating assumptions is the essence of specification
 - “Callers must not pass *null* as an argument”
 - “Callee will always return an unaliased object”
 - …
Our approach

• Hoare Logic: a 1970s approach to logical reasoning about code
 – For now, consider just variables, assignments, if-statements, while-loops
 • So no objects or methods

• This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

• Next lecture: Loops
Why?

- Programmers rarely “use Hoare logic” in this much detail
 - For simple snippets of code, it’s overkill
 - Gets very complicated with objects and aliasing
 - But can be very useful to develop and reason about loops and data with subtle invariants
 - Examples: Homework 0, Homework 2

- Also it’s an ideal setting for the right logical foundations
 - How can logic “talk about” program states?
 - How does code execution “change what is true”?
 - What do “weaker” and “stronger” mean?

This is all essential for specifying library-interfaces, which does happen All the Time in The Real World® (coming lectures)
Example

Forward reasoning:

- Suppose we initially know (or assume) \(w > 0 \)

  ```
  // w > 0  
  x = 17;  
  // w > 0 ∧ x == 17  
  y = 42;  
  // w > 0 ∧ x == 17 ∧ y == 42  
  z = w + x + y;  
  // w > 0 ∧ x == 17 ∧ y == 42 ∧ z > 59  
  ...
  ```

- Then we know various things after, including \(z > 59 \)
Example

Backward reasoning:

- Suppose we want z to be negative at the end

  ```
  // w + 17 + 42 < 0
  x = 17;
  // w + x + 42 < 0
  y = 42;
  // w + x + y < 0
  z = w + x + y;
  // z < 0
  ```

- Then we know initially we need to know/assume $w < -59$
 - Necessary and sufficient
Forward vs. Backward, Part 1

• Forward reasoning:
 – Determine what follows from initial assumptions
 – Most useful for maintaining an invariant

• Backward reasoning
 – Determine sufficient conditions for a certain result
 • If result desired, the assumptions suffice for correctness
 • If result undesired, the assumptions suffice to trigger bug
Forward vs. Backward, Part 2

• Forward reasoning:
 – Simulates the code (for many “inputs” “at once”)
 – Often more intuitive
 – But introduces [many] facts irrelevant to a goal

• Backward reasoning
 – Often more useful: Understand what each part of the code contributes toward the goal
 – “Thinking backwards” takes practice but gives you a powerful new way to reason about programs
// initial assumptions
if(...) {
 ... // also know test evaluated to true
} else {
 ... // also know test evaluated to false
}
// either branch could have executed

Two key ideas:

1. The precondition for each branch includes information about the result of the test-expression

2. The overall postcondition is the disjunction (“or”) of the postcondition of the branches
Example (Forward)

Assume initially $x \geq 0$

// $x \geq 0$
$z = 0;$
// $x \geq 0 \land z == 0$
if($x \neq 0$) {
 // $x \geq 0 \land z == 0 \land x \neq 0$ (so $x > 0$)
 $z = x;$
 // ... $\land z > 0$
} else {
 // $x \geq 0 \land z == 0 \land !(x!=0)$ (so $x == 0$)
 $z = x + 1;$
 // ... $\land z == 1$
}
// $(... \land z > 0) \lor (... \land z == 1)$ (so $z > 0$)
Our approach

• Hoare Logic, a 1970s approach to logical reasoning about code
 – [Named after its inventor, Tony Hoare]
 – Considering just variables, assignments, if-statements, while-loops
 • So no objects or methods

• This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

• Next lecture: Loops
Some notation and terminology

- The “assumption” before some code is the **precondition**
- The “what holds after (given assumption)” is the **postcondition**
- Instead of writing pre/postconditions after `//`, write them in `{...}`
 - This is not Java
 - How Hoare logic has been written “on paper” for 40ish years

    ```
    \{ w < -59 \}
    x = 17;
    \{ w + x < -42 \}
    ```
 - In pre/postconditions, `=` is equality, not assignment
 - Math’s “=”, which for numbers is Java’s `==`

      ```
      \{ w > 0 \land x = 17 \}
      y = 42;
      \{ w > 0 \land x = 17 \land y = 42 \}
      ```
What an assertion means

• An assertion (pre/postcondition) is a logical formula that can refer to program state (e.g., contents of variables)

• A program state is something that “given” a variable can “tell you” its contents
 – Or any expression that has no side-effects

• An assertion holds for a program state, if evaluating using the program state produces true
 – Evaluating a program variable produces its contents in the state
 – Can think of an assertion as representing the set of (exactly the) states for which it holds
A Hoare Triple

- A **Hoare triple** is two assertions and one piece of code:
 \[
 \{ P \} \ S \ { Q }
 \]
 - \(P \) the precondition
 - \(S \) the code (statement)
 - \(Q \) the postcondition

- A Hoare triple \(\{ P \} \ S \ { Q } \) is (by definition) **valid** if:
 - For all states for which \(P \) holds, executing \(S \) always produces a state for which \(Q \) holds
 - Less formally: If \(P \) is true before \(S \), then \(Q \) must be true after
 - Else the Hoare triple is **invalid**
Examples

Valid or invalid?

– (Assume all variables are integers without overflow)

• \{x \neq 0\} \ y = x\times x; \ {y > 0}\n• \{z \neq 1\} \ y = z\times z; \ {y \neq z}\n• \{x \geq 0\} \ y = 2\times x; \ {y > x}\n• \{true\} (if(\ x > 7\) \{y=4;\} \ else \ {y=3;\}) \ {y < 5}\n• \{true\} (x = y; \ z = x;) \ {y=z}\n• \{x=7 \ \land \ y=5\}
 (tmp=x; \ x=tmp; \ y=x;)
\{y=7 \ \land \ x=5\}
Examples

Valid or invalid?

- (Assume all variables are integers without overflow)

 • \(\{x \neq 0\} \ y = x \times x; \ \{y > 0\}\) valid
 • \(\{z \neq 1\} \ y = z \times z; \ \{y \neq z\}\) invalid
 • \(\{x \geq 0\} \ y = 2 \times x; \ \{y > x\}\) invalid
 • \(\{\text{true}\} \ (\text{if}(x > 7) \ {y=4;}) \ \text{else} \ {y=3;}\) \{y < 5\} valid
 • \(\{\text{true}\} \ (x = y; \ z = x;) \ \{y=z\}\) valid
 • \(\{x=7 \ \land \ y=5\}\) invalid

 \((\text{tmp}=x; \ x=\text{tmp}; \ y=x;)\)

 \(\{y=7 \ \land \ x=5\}\)
Aside: assert in Java

• An assertion in Java is a statement with a Java expression, e.g.,
 \[\text{assert } x > 0 \land y < x;\]

• Similar to our assertions
 – Evaluate using a program state to get true or false
 – Uses Java syntax

• In Java, this is a run-time thing: Run the code and raise an exception if assertion is violated
 – Unless assertion-checking is disabled
 – Later course topic

• This week: we are reasoning about the code, not running it on some input
The general rules

- So far: Decided if a Hoare triple was valid by using our understanding of programming constructs

- Now: For each kind of construct there is a general rule
 - A rule for assignment statements
 - A rule for two statements in sequence
 - A rule for conditionals
 - [next lecture:] A rule for loops
 - ...
Assignment statements

\{ P \} \ x = e; \ { Q \}

- Let Q' be like Q except replace every x with e
- Triple is valid if:
 - For all program states, if P holds, then Q' holds
 - That is, P implies Q', written $P \Rightarrow Q'$

- Example: $\{ z > 34 \} \ y = z + 1; \ { y > 1 \}$
 - Q' is $\{ z + 1 > 1 \}$
Sequences

\{P\} S1;S2 \{Q\}

- Triple is valid if and only if there is an assertion R such that
 - $\{P\}S1\{R\}$ is valid, and
 - $\{R\}S2\{Q\}$ is valid

- Example: $\{z \geq 1\}$ $y=z+1; w=y*y; \{w > y\}$ (integers)
 - Let R be $\{y > 1\}$
 - Show $\{z \geq 1\}$ $y=z+1; \{y > 1\}$
 - Use rule for assignments: $z \geq 1$ implies $z+1 > 1$
 - Show $\{y > 1\}$ $w=y*y; \{w > y\}$
 - Use rule for assignments: $y > 1$ implies $y*y > y$
Conditionals

\{P\} \textbf{if}(b) \ S1 \ \textbf{else} \ S2 \ \{Q\}

- Triple is valid if and only if there are assertions \(Q_1, Q_2\) such that
 - \(\{P \land b\}S1\{Q_1\}\) is valid, and
 - \(\{P \land \neg b\}S2\{Q_2\}\) is valid, and
 - \(Q_1 \lor Q_2\) implies \(Q\)

- Example: \(\{\text{true}\}\ (\text{if}(x > 7) \ y=x; \ \text{else} \ y=20;)\) \(\{y > 5\}\)
 - Let \(Q_1\) be \(\{y > 7\}\) (other choices work too)
 - Let \(Q_2\) be \(\{y = 20\}\) (other choices work too)
 - Use assignment rule to show \(\{\text{true} \land x > 7\}y=x;\{y>7\}\)
 - Use assignment rule to show \(\{\text{true} \land x \leq 7\}y=20;\{y=20\}\)
 - Indicate \(y>7 \lor y=20\) implies \(y>5\)
Our approach

• Hoare Logic, a 1970s approach to logical reasoning about code
 – Considering just variables, assignments, if-statements, while-loops
 • So no objects or methods

• This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

• Next lecture: Loops
Weaker vs. Stronger

If P1 implies P2 (written P1 => P2), then:

- P1 is stronger than P2
- P2 is weaker than P1

- Whenever P1 holds, P2 also holds
- So it is more (or at least as) “difficult” to satisfy P1
 - The program states where P1 holds are a subset of the program states where P2 holds
- So P1 puts more constraints on program states
- So it’s a stronger set of obligations/requirements
Examples

• $x = 17$ is stronger than $x > 0$

• *x is prime* is neither stronger nor weaker than *x is odd*

• *x is prime and $x > 2$* is stronger than
 x is odd and $x > 2$

• ...
Why this matters to us

• Suppose:
 – \{P\}S\{Q\}, and
 – P is weaker than some P₁, and
 – Q is stronger than some Q₁

• Then: \{P₁\}S\{Q\} and \{P\}S\{Q₁\} and \{P₁\}S\{Q₁\}

• Example:
 – P is \(x \geq 0\)
 – P₁ is \(x > 0\)
 – S is \(y = x+1\)
 – Q is \(y > 0\)
 – Q₁ is \(y \geq 0\)
So…

• For backward reasoning, if we want $\{P\} S \{Q\}$, we could instead:
 – Show $\{P1\} S \{Q\}$, and
 – Show $P \Rightarrow P1$

• Better, we could just show $\{P2\} S \{Q\}$ where $P2$ is the weakest precondition of Q for S
 – Weakest means the most lenient assumptions such that Q will hold after executing S
 – Any precondition P such that $\{P\} S \{Q\}$ is valid will be stronger than $P2$, i.e., $P \Rightarrow P2$

• Amazing (?): Without loops/methods, for any S and Q, there exists a unique weakest precondition, written $wp(S,Q)$
 – Like our general rules with backward reasoning
Weakest preconditions

• $wp(x = e; Q)$ is Q with each x replaced by e
 - Example: $wp(x = y*y; x > 4) = y*y > 4$, i.e., $|y| > 2$

• $wp(S1; S2, Q)$ is $wp(S1,wp(S2,Q))$
 - i.e., let R be $wp(S2,Q)$ and overall wp is $wp(S1,R)$
 - Example: $wp((y=x+1; z=y+1;), z > 2) = (x + 1) + 1 > 2$, i.e., $x > 0$

• $wp(if \ b \ S1 \ else \ S2, Q)$ is this logic formula:

 $(b \land wp(S1,Q)) \lor (!b \land wp(S2,Q))$

 - (In any state, b will evaluate to either true or false…)
 - (You can sometimes then simplify the result)
Simple examples

- If S is $x = y \times y$ and Q is $x > 4$, then $wp(S, Q)$ is $y \times y > 4$, i.e., $|y| > 2$

- If S is $y = x + 1; \ z = y - 3;$ and Q is $z = 10$, then $wp(S, Q)$...

 $= wp(y = x + 1; \ z = y - 3; , \ z = 10)$
 $= wp(y = x + 1; , \ wp(z = y - 3; , \ z = 10))$
 $= wp(y = x + 1; , y - 3 = 10)$
 $= wp(y = x + 1; , y = 13)$
 $= x + 1 = 13$
 $= x = 12$
Bigger example

S is if (x < 5) {
 x = x*x;
} else {
 x = x+1;
}

Q is x >= 9

wp(S, x >= 9) =
= (x < 5 ∧ wp(x = x*x;, x >= 9))
 ∨ (x >= 5 ∧ wp(x = x+1;, x >= 9))
= (x < 5 ∧ x*x >= 9)
 ∨ (x >= 5 ∧ x+1 >= 9)
= (x <= -3) ∨ (x >= 3 ∧ x < 5)
 ∨ (x >= 8)
If-statements review

Forward reasoning

\{P\}
if B
 \{P \land B\}
 S1
 \{Q1\}
else
 \{P \land !B\}
 S2
 \{Q2\}
\{Q1 \lor Q2\}

Backward reasoning

\{(B \land \text{wp}(S1, Q)) \lor (!B \land \text{wp}(S2, Q))\}
if B
 \{\text{wp}(S1, Q)\}
 S1
 \{Q\}
else
 \{\text{wp}(S2, Q)\}
 S2
 \{Q\}
\{Q\}
“Correct”

• If $wp(S,Q)$ is true, then executing S will always produce a state where Q holds

 – true holds for every program state
One more issue

• With forward reasoning, there is a problem with assignment:
 – Changing a variable can affect other assumptions

• Example:

 \{
 \text{true}
 \}

 \text{\texttt{w=x+y;}}

 \{\text{w = x + y;}}

 \text{x=4;}

 \{\text{w = x + y \land x = 4}}

 \text{y=3;}

 \{\text{w = x + y \land x = 4 \land y = 3}}

 But clearly we do not know \text{w=7}!
The fix

• When you assign to a variable, you need to replace all other uses of the variable in the post-condition with a different variable
 – So you refer to the “old contents”

• Corrected example:

 \{true\}
 w=x+y;
 \{w = x + y;\}
 x=4;
 \{w = x1 + y ∧ x = 4\}
 y=3;
 \{w = x1 + y1 ∧ x = 4 ∧ y = 3\}
Useful example

- **Swap contents**
 - Give a name to initial contents so we can refer to them in the post-condition
 - Just in the formulas: these “names” are not in the program
 - Use these extra variables to avoid “forgetting” “connections”

\[
\{x = x_pre \land y = y_pre\} \\
tmp = x; \\
\{x = x_pre \land y = y_pre \land tmp=x\} \\
x = y; \\
\{x = y \land y = y_pre \land tmp=x_pre\} \\
y = tmp; \\
\{x = y_pre \land y = tmp \land tmp=x_pre\}
\]