
try  
{ 
    Assert(Life.Real); 
    Assert(Life.Fantasy); 
} 
catch(LandSlideException ex) 
{ 
     #region Reality 
     while(true) 
     { 
         character.Eyes.ForEach(eye => eye.Open().Orient(Direction.Sky).See();); 
         self.Wealth = null; 
         self.Sex = Sex.Male; 
 
         if(self.ComeDifficulty == Difficulty.Easy && self.GoDifficulty == 

Difficulty.Easy && self.High < 0.1 && self.Low < 0.1) 
         { 
             self.Sympathies.Clear(); 
 
             switch(wind.Direction) 
             { 
                 case Direction.North: 
                 case Direction.East: 
                 case Direction.South: 
                 case Direction.West: 
                 default: 
                 piano.Play(); 
                 break; 
             } 
         } 
     } 
     #endregion 
} 

“Bohemian Rhapsody” 

 
Slides by Alex Mariakakis 

 
with material from Krysta Yousoufian, 

Mike Ernst, Kellen Donohue 

Section 6: 
HW6 and Interfaces 

Agenda 
• BFS 
• Interfaces 
• Parsing Marvel Data 

Graphs 

A B 

C D 

E 

Can I reach B 
from A? 

Breadth-First Search (BFS) 
• Often used for discovering connectivity 
• Calculates the shortest path if and only if all edges 

have same positive or no weight 
• Depth-first search (DFS) is commonly mentioned 

with BFS 
o BFS looks “wide”, DFS looks “deep” 
o Can also be used for discovery, but not the shortest path 

 
 

BFS Pseudocode 
public boolean find(Node start, Node end) {  
 put start node in a queue 
 while (queue is not empty) { 
  pop node N off queue 
  if (N is goal) 
   return true; 
  else { 
   for each node O that is child of N 
    push O onto queue 
  } 
 } 
 return false; 
} 



Breadth-First Search 

Q: <> 
Q: <A> 
Q: <> 
Q: <B> 
Q: <B, C> 
DONE 
 
 
 

 

A 

B C 

Breadth-First Search with Cycle 

Q: <> 
Q: <A> 
Q: <> 
Q: <B> 
Q: <> 
Q: <C> 
Q: <> 
Q: <A> 
NEVER DONE 
 

A 

B C 

BFS Pseudocode 
public boolean find(Node start, Node end) {  
 put start node in a queue 
 while (queue is not empty) { 
  pop node N off queue 
  if (N is goal) 
   return true; 
  else { 
   for each node O that is child of N 
    push O onto queue 
  } 
 } 
 return false; 
} 

What if there’s a cycle? 
What if there’s no path between start and end? 

Mark the node as visited! 

Breadth-First Search 

Q: <> 
 

A 

B 

C D 

E 

Breadth-First Search 

Q: <> 
Q: <A> 

A 

B 

C D 

E 

Breadth-First Search 

Q: <> 
Q: <A> 
Q: <> A 

E 

B 

D C 



Breadth-First Search 

Q: <> 
Q: <A> 
Q: <> 
Q: <C> 

A 

C 

E 

B 

D 

Breadth-First Search 

Q: <> 
Q: <A> 
Q: <> 
Q: <C> 
Q: <C ,D> 

A 

C D 

E 

B 

Breadth-First Search 

Q: <> 
Q: <A> 
Q: <> 
Q: <C> 
Q: <C ,D> 
Q: <D> 

A 

C D 

B 

E 

Breadth-First Search 

Q: <> 
Q: <A> 
Q: <> 
Q: <C> 
Q: <C ,D> 
Q: <D> 
Q: <D, E> 

A 

C D 

E 

B 

Breadth-First Search 

Q: <> 
Q: <A> 
Q: <> 
Q: <C> 
Q: <C ,D> 
Q: <D> 
Q: <D, E> 
Q: <E> 

A 

C D 

E 

B 

Breadth-First Search 

Q: <> 
Q: <A> 
Q: <> 
Q: <C> 
Q: <C ,D> 
Q: <D> 
Q: <D, E> 
Q: <E> 
DONE 

A 

C D 

E 

B 



Shortest Paths with BFS 

Destination Path Cost 
A <B,A> 1 
B <B> 0 
C <B,A,C> 2 
D <B,D> 1 
E <B,D,E> 2 

From Node B 

A 

B 

C D 

E 

1 

1 

1 

1 1 

1 

1 

Shortest Paths with Weights 

A 

B 

C D 

E 

Destination Path Cost 
A <B,A> 2 
B <B> 0 
C <B,A,C> 5 
D <B,A,C,D> 7 
E <B,A,C,E> 7 

From Node B 
2 

100 

2 

6 2 

3 

100 

Paths are not the same! 

Classes, Interfaces, and Types 
• The fundamental unit of programming in Java is a 

class 
• Classes can extend other classes and implement 

interfaces
• Interfaces can extend other interfaces 

Classes, Objects, and Java 
• Everything is an instance of a class 

o Defines data and methods 
• Every class extends exactly one other class 

o Object if no explicit superclass 
o Inherits superclass fields 

• Every class also defines a type 
o Foo defines type Foo 
o Foo inherits all inherited types 

• Java classes contain both specification and 
implementation! 

Interfaces 
• Pure type declaration 
 public interface Comparable {  
  int compareTo(Object other); 
 }     
• Can contain: 

o Method specifications (implicitly public abstract) 
o Named constants (implicitly public final static) 

• Does not contain implementation 
• Cannot create instances of interfaces 

Implementing Interfaces 
• A class can implement one or more interfaces 

class Kitten implements Pettable, Huggable 

• The implementing class and its instances have the 
interface type(s) as well as the class type(s) 

• The class must provide or inherit an implementation 
of all methods defined by the interface(s) 
o Not true for abstract classes 



Using Interface Types 
• An interface defines a type, so we can declare 

variables and parameters of that type 
• A variable with an interface type can refer to an 

object of any class implementing that type 
List<String> x = new ArrayList<String>(); 

void sort(List myList) {…} 
 

Guidelines for Interfaces 
• Provide interfaces for significant types and 

abstractions 
• Write code using interface types like Map instead of 

HashMap and TreeMap wherever possible 
o Allows code to work with different implementations later on 

• Both interfaces and classes are appropriate in 
various circumstances 

Demo 
Parsing the Marvel data 


