try
{

Assert (Life.Real) ;

Assert (Life.Fantasy);
}
catch (LandSlideException ex)
{

#region Reality
while (true)

{

character.Eyes.ForEach (eye => eye.Open () .Orient (Direction.Sky) .See(););
self.Wealth = null;

self.Sex = Sex.Male;

if(self.ComeDifficulty == Difficulty.Easy && self.GoDifficulty ==

Difficulty.Easy && self.High < 0.1 && self.Low < 0.1)

{
self.Sympathies.Clear ()

switch (wind.Direction)

{
case Direction.North:
case Direction.East:
case Direction.South:
case Direction.West:
default:
piano.Play ()
break; “Bohemian Rhapsody”
}

}

#endregion



Section 6:
HW6 and Interfaces

Slides by Alex Mariakakis

with material from Krysta Yousoufian,
Mike Ernst, Kellen Donohue



Agenda

* BFS
* Interfaces
« Parsing Marvel Data



Graphs

Canlreach B
from A?




Breadth-First Search (BFS)

Often used for discovering connectivity

Calculates the shortest path it and only if all edges
have same positive or no weight

Depth-first search (DFS) is commonly mentioned

with BFS

o BFS looks “wide”, DFS looks “deep”
o Can also be used for discovery, but not the shortest path



BES Pseudocode

public boolean find (Node start, Node end) {
put start node 1n a queue
while (queue 1s not empty) {
pop node N off queue
1f (N 1s goal)
return true;
else {
for each node O that 1i1s child of N
push O onto queue

}

return false;



Breadth-First Search




Breadth-First Search with Cycle

Q: <>

Q: <A>
Q: <>

Q: <B>
Q: <>
Q
Q
Q
N

- <C>

C <>

<A>

EVER DONE



BES Pseudocode

public boolean find (Node start, Node end) {
put start node 1n a queue
while (queue 1s
pop node N f queue
1f (N 1s goal
return t
else {

O that is child of N
nto queue

for each no
push O

}
}

return false;

\ Mark the node as visited!

What if there’s a cycle?
What if there’s no path between start and end?



Breadth-First Search




Breadth-First Search




Breadth-First Search




LY LD L

Breadth-First Search




LYY

Breadth-First Search




LYY L

Breadth-First Search




PO LYLHL

Breadth-First Search




OO

Breadth-First Search




OO
N
O
V

U
O -
Z
M

<>

Breadth-First Search




Shortest Paths with BFS

From Node B

Destination Path Cost

B <B> 0

D <B,D> 1




Shortest Paths with Weights

From Node B

Destination Path Cost

B <B> 0

D <B,A,C,D> 7

Paths are not the samel!



Classes, Interfaces, and Types

The fundamental unit of programming in Java is a
class

Classes can extend other classes and implement
Inferfaces

Intferfaces can extend ofther intferfaces



Classes, Objects, and Java

Everything is an instance of a class
o Defines data and methods

Every class extends exactly one other class
o Object if no explicit superclass

o Inherits superclass fields

Every class also defines a type

o Foo defines type Foo

o Foo inherits all inherited types

Java classes contain both specification and
implementation!



Interfaces

Pure type declaration
public 1nterface Comparable {
int compareTo (Object other);

}

Can contain:
o Method specifications (implicitly public abstract)
o Named constants (implicitly public final static)

Does not contain implementation
Cannoft create instances of inferfaces



Implementing Interfaces

A class can implement one or more interfaces
class Kitten implements Pettable, Huggable

The implementing class and its instances have the
interface type(s) as well as the class type(s)

The class must provide or inherit an implementation
of all methods defined by the interface(s)
o Not true for abstract classes



Using Interface Types

* An inferface defines a type, so we can declare
variables and parameters of that type

« A variable with an interface type can refer to an
object of any class implementing that type
Li1st<String> x = new ArrayList<String>();
vold sort (List myList) {..}



Guidelines for Interfaces

Provide interfaces for significant types and
abstractions

Write code using interface types like Map instead of
HashMap and TreeMap wherever possible
o Allows code to work with different implementations later on

Both interfaces and classes are appropriate in
various circumstances



Demo
Parsing the Marvel data



