

Slides by Alex Mariakakis

Section 5:
Midterm Review

Winter 2013 Q1
Using backwards reasoning, find the weakest precondition for
each sequence of statements and postcondition below. Insert
appropriate assertions in each blank line. You should simplify your
answers if possible.

{_______________}
z = x + y;
{_______________}
y = z – 3;
{x > y}

Winter 2013 Q1
Using backwards reasoning, find the weakest precondition for
each sequence of statements and postcondition below. Insert
appropriate assertions in each blank line. You should simplify your
answers if possible.

{_______________}
z = x + y;
{x > z - 3}
y = z – 3;
{x > y}

Winter 2013 Q1
Using backwards reasoning, find the weakest precondition for
each sequence of statements and postcondition below. Insert
appropriate assertions in each blank line. You should simplify your
answers if possible.

{x > x + y – 3 => y < 3}
z = x + y;
{x > z - 3}
y = z – 3;
{x > y}

Winter 2013 Q1
Using backwards reasoning, find the weakest precondition for
each sequence of statements and postcondition below. Insert
appropriate assertions in each blank line. You should simplify your
answers if possible.

{_______________}
p = a + b;
{_______________}
q = a - b;
{p + q = 42}

Winter 2013 Q1
Using backwards reasoning, find the weakest precondition for
each sequence of statements and postcondition below. Insert
appropriate assertions in each blank line. You should simplify your
answers if possible.

{_______________}
p = a + b;
{p + a – b = 42}
q = a - b;
{p + q = 42}

Winter 2013 Q1
Using backwards reasoning, find the weakest precondition for
each sequence of statements and postcondition below. Insert
appropriate assertions in each blank line. You should simplify your
answers if possible.

{a + b + a – b = 42 => a = 21}
p = a + b;
{p + a – b = 42}
q = a - b;
{p + q = 42}

Winter 2013 Q2
Suppose we have a BankAccount class with instance variable balance.
Consider the following specifications:
A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance

@effects decreases balance by amount
C. @throws InsufficientFundsException if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?
I. void withdraw(int amount) {

 balance -= amount;
}

A B C

Winter 2013 Q2
Suppose we have a BankAccount class with instance variable balance.
Consider the following specifications:
A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance

@effects decreases balance by amount
C. @throws InsufficientFundsException if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?
I. void withdraw(int amount) {

 balance -= amount;
}

A B C

Another way to ask the question:

If the client does not know the
implementation, will the method do what
he/she expects it to do based on the
specification?

Winter 2013 Q2
Suppose we have a BankAccount class with instance variable balance.
Consider the following specifications:
A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance

@effects decreases balance by amount
C. @throws InsufficientFundsException if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?
I. void withdraw(int amount) {

 balance -= amount;
}

A B C

O

a. The method does exactly what the spec
says

Winter 2013 Q2
Suppose we have a BankAccount class with instance variable balance.
Consider the following specifications:
A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance

@effects decreases balance by amount
C. @throws InsufficientFundsException if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?
I. void withdraw(int amount) {

 balance -= amount;
}

A B C

O O

a. The method does exactly what the spec
says

b. If the client follows the @requires
precondition, the code will execute as
expected

Winter 2013 Q2
Suppose we have a BankAccount class with instance variable balance.
Consider the following specifications:
A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance

@effects decreases balance by amount
C. @throws InsufficientFundsException if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?
I. void withdraw(int amount) {

 balance -= amount;
}

A B C

O O X

a. The method does exactly what the spec
says

b. If the client follows the @requires
precondition, the code will execute as
expected

c. The method does not throw an exception

Winter 2013 Q2
Suppose we have a BankAccount class with instance variable balance.
Consider the following specifications:
A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance

@effects decreases balance by amount
C. @throws InsufficientFundsException if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?
II. void withdraw(int amount) {

 if (balance >= amount) balance -= amount;
}

A B C

Winter 2013 Q2
Suppose we have a BankAccount class with instance variable balance.
Consider the following specifications:
A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance

@effects decreases balance by amount
C. @throws InsufficientFundsException if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?
II. void withdraw(int amount) {

 if (balance >= amount) balance -= amount;
}

a. The balance will not always decrease

A B C

X

Winter 2013 Q2
Suppose we have a BankAccount class with instance variable balance.
Consider the following specifications:
A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance

@effects decreases balance by amount
C. @throws InsufficientFundsException if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?
II. void withdraw(int amount) {

 if (balance >= amount) balance -= amount;
}

a. The balance will not always decrease
b. If the client follows the @requires

precondition, the code will execute as
expected

A B C

X O

Winter 2013 Q2
Suppose we have a BankAccount class with instance variable balance.
Consider the following specifications:
A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance

@effects decreases balance by amount
C. @throws InsufficientFundsException if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?
II. void withdraw(int amount) {

 if (balance >= amount) balance -= amount;
}

a. The balance will not always decrease
b. If the client follows the @requires

precondition, the code will execute as
expected

c. The method does not throw an
exception

A B C

X O X

Winter 2013 Q2
Suppose we have a BankAccount class with instance variable balance.
Consider the following specifications:
A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance

@effects decreases balance by amount
C. @throws InsufficientFundsException if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?
III.void withdraw(int amount) {

 if (amount < 0) throw new IllegalArgumentException();
 balance -= amount;
}

A B C

Winter 2013 Q2
Suppose we have a BankAccount class with instance variable balance.
Consider the following specifications:
A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance

@effects decreases balance by amount
C. @throws InsufficientFundsException if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?
III.void withdraw(int amount) {

 if (amount < 0) throw new IllegalArgumentException();
 balance -= amount;
}

A B C

X

a. The balance will not always decrease

Winter 2013 Q2
Suppose we have a BankAccount class with instance variable balance.
Consider the following specifications:
A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance

@effects decreases balance by amount
C. @throws InsufficientFundsException if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?
III.void withdraw(int amount) {

 if (amount < 0) throw new IllegalArgumentException();
 balance -= amount;
}

A B C

X O

a. The balance will not always decrease
b. If the client follows the @requires

precondition, the code will execute as
expected

Winter 2013 Q2
Suppose we have a BankAccount class with instance variable balance.
Consider the following specifications:
A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance

@effects decreases balance by amount
C. @throws InsufficientFundsException if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?
III.void withdraw(int amount) {

 if (amount < 0) throw new IllegalArgumentException();
 balance -= amount;
}

A B C

X O X

a. The balance will not always decrease
b. If the client follows the @requires

precondition, the code will execute as
expected

c. The method throws the wrong kind of
exception and for the wrong reason

Winter 2013 Q2
Suppose we have a BankAccount class with instance variable balance.
Consider the following specifications:
A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance

@effects decreases balance by amount
C. @throws InsufficientFundsException if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?
IV. void withdraw(int amount) throws InsufficientFundsException {

 if (balance < amount) throw new InsufficientFundsException();
 balance -= amount;
}

A B C

Winter 2013 Q2
Suppose we have a BankAccount class with instance variable balance.
Consider the following specifications:
A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance

@effects decreases balance by amount
C. @throws InsufficientFundsException if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?
IV. void withdraw(int amount) throws InsufficientFundsException{

 if (balance < amount) throw new InsufficientFundsException();
 balance -= amount;
}

A B C

X

a. The balance will not always decrease

Winter 2013 Q2
Suppose we have a BankAccount class with instance variable balance.
Consider the following specifications:
A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance

@effects decreases balance by amount
C. @throws InsufficientFundsException if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?
IV. void withdraw(int amount) throws InsufficientFundsException{

 if (balance < amount) throw new InsufficientFundsException();
 balance -= amount;
}

A B C

X O

a. The balance will not always decrease
b. If the client follows the @requires

precondition, the code will execute as
expected

Winter 2013 Q2
Suppose we have a BankAccount class with instance variable balance.
Consider the following specifications:
A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance

@effects decreases balance by amount
C. @throws InsufficientFundsException if balance < amount

@effects decreases balance by amount

Which specifications does this implementation meet?
IV. void withdraw(int amount) throws InsufficientFundsException{

 if (balance < amount) throw new InsufficientFundsException();
 balance -= amount;
}

A B C

X O O

a. The balance will not always decrease
b. If the client follows the @requires

precondition, the code will execute as
expected

c. The method does exactly what the spec
says

Winter 2013 Q3
/**
* An IntPoly is an immutable, integer-valued polynomial
* with integer coefficients. A typical IntPoly value
* is a_0 + a_1*x + a_2*x^2 + ... + a_n*x_n. An IntPoly
* with degree n has coefficent a_n != 0, except that the
* zero polynomial is represented as a polynomial of
* degree 0 and a_0 = 0 in that case.
*/

public class IntPoly {

int a[];
// AF(this) = a has n+1 entries, and for each entry,
// a[i] = coefficient a_i of the polynomial.

}

Winter 2013 Q3
public class IntPoly {

/**
* Return a new IntPoly that is the sum of this
and other
* @requires
* @modifies
* @effects
* @return
* @throws
*/
public IntPoly add(IntPoly other);

}

Winter 2013 Q3
public class IntPoly {

/**
* Return a new IntPoly that is the sum of this
and other
* @requires other != null
* @modifies none
* @effects none
* @return a new IntPoly that is the sum of this
and the other
* @throws none
*/
public IntPoly add(IntPoly other);

}

Winter 2013 Q3
public class IntPoly {

/**
* Return a new IntPoly that is the sum of this
and other
* @requires other != null
* @modifies none
* @effects none
* @return a new IntPoly that is the sum of this
and the other
* @throws none
*/
public IntPoly add(IntPoly other);

}

Note: if you have an instance variable in @modifies,
it usually appears in @effects as well

Winter 2013 Q3
public class IntPoly {

/**
* Return a new IntPoly that is the sum of this
and other
* @requires other != null
* @modifies none
* @effects none
* @return a new IntPoly that is the sum of this
and the other
* @throws none
*/
public IntPoly add(IntPoly other);

}

Note: this is not the only answer, you could specify an
exception in @throws or specify the output in @return

Winter 2013 Q4
public class IntPoly {

int a[];
// AF(this) = a has n+1 entries, and for each entry,
// a[i] = coefficient a_i of the polynomial.

// Return the coefficients of this IntPoly
public int[] getCoeffs() {

return a;
}

One of your colleagues is worried that this creates a potential representation
exposure problem. Another colleague says there’s no problem since an IntPoly
is immutable. Is there a problem? Give a brief justification for your answer.

Winter 2013 Q4
public class IntPoly {

int a[];
// AF(this) = a has n+1 entries, and for each entry,
// a[i] = coefficient a_i of the polynomial.

// Return the coefficients of this IntPoly
public int[] getCoeffs() {

return a;
}

One of your colleagues is worried that this creates a potential representation
exposure problem. Another colleague says there’s no problem since an IntPoly
is immutable. Is there a problem? Give a brief justification for your answer.

Yes, there is a problem. IntPoly seems immutable because there are no setters,
but the return value is a reference to the same coefficient array stored in the
IntPoly and the client code could alter those coefficients.

Winter 2013 Q4
public class IntPoly {

int a[];
// AF(this) = a has n+1 entries, and for each entry,
// a[i] = coefficient a_i of the polynomial.

// Return the coefficients of this IntPoly
public int[] getCoeffs() {

return a;
}

If there is a representation exposure problem, give a new or repaired
implementation of getCoeffs() that fixes the problem but still returns the
coefficients of the IntPoly to the client. If it saves time you can give a precise
description of the changes needed instead of writing the detailed Java code.

Winter 2013 Q4
public class IntPoly {

int a[];
// AF(this) = a has n+1 entries, and for each entry,
// a[i] = coefficient a_i of the polynomial.

// Return the coefficients of this IntPoly
public int[] getCoeffs() {

return a;
}

If there is a representation exposure problem, give a new or repaired
implementation of getCoeffs() that fixes the problem but still returns the
coefficients of the IntPoly to the client. If it saves time you can give a precise
description of the changes needed instead of writing the detailed Java code.

Create a new array the same length as a, copy the contents of a to it, and return
the new array.

Winter 2013 Q5
We would like to add a method to this class that evaluates the
IntPoly at a particular value x. In other words, given a value x, the
method valueAt(x) should return a0 + a1x + a2x2 + ... + anxn, where
a0 through an are the coefficients of this IntPoly.
For this problem, develop an implementation of this method and
prove that your implementation is correct.

Winter 2013 Q5
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {
 int val = a[0];
 int xk = 1;
 int k = 0;
 int n = a.length-1; // degree of this, n >=0
 {_____}
 while (k != n) {
 {_____}
 xk = xk * x;
 {_____}
 val = val + a[k+1]*xk;
 {_____}
 k = k +1;
 {_____}
 }
 {_____}
 return val;
}

Winter 2013 Q5
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {
 int val = a[0];
 int xk = 1;
 int k = 0;
 int n = a.length-1; // degree of this, n >=0
 {inv: xk = x^k && val = a[0] + a[1]*x + … + a[k]*x^k}
 while (k != n) {
 {_____}
 xk = xk * x;
 {_____}
 val = val + a[k+1]*xk;
 {_____}
 k = k +1;
 {_____}
 }
 {_____}
 return val;
}

Winter 2013 Q5
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {
 int val = a[0];
 int xk = 1;
 int k = 0;
 int n = a.length-1; // degree of this, n >=0
 {inv: xk = x^k && val = a[0] + a[1]*x + … + a[k]*x^k}
 while (k != n) {
 {inv && k != n}
 xk = xk * x;
 {_____}
 val = val + a[k+1]*xk;
 {_____}
 k = k +1;
 {_____}
 }
 {_____}
 return val;
}

Winter 2013 Q5
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {
 int val = a[0];
 int xk = 1;
 int k = 0;
 int n = a.length-1; // degree of this, n >=0
 {inv: xk = x^k && val = a[0] + a[1]*x + … + a[k]*x^k}
 while (k != n) {
 {inv && k != n}
 xk = xk * x;
 {xk = x^(k+1) && val = a[0] + a[1]*x + … + a[k]*x^k}
 val = val + a[k+1]*xk;
 {_____}
 k = k +1;
 {_____}
 }
 {_____}
 return val;
}

Winter 2013 Q5
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {
 int val = a[0];
 int xk = 1;
 int k = 0;
 int n = a.length-1; // degree of this, n >=0
 {inv: xk = x^k && val = a[0] + a[1]*x + … + a[k]*x^k}
 while (k != n) {
 {inv && k != n}
 xk = xk * x;
 {xk = x^(k+1) && val = a[0] + a[1]*x + … + a[k]*x^k}
 val = val + a[k+1]*xk;
 {xk = x^(k+1) && val = a[0] + a[1]*x + … + a[k+1]*x^(k+1)}
 k = k +1;
 {_____}
 }
 {_____}
 return val;
}

Winter 2013 Q5
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {
 int val = a[0];
 int xk = 1;
 int k = 0;
 int n = a.length-1; // degree of this, n >=0
 {inv: xk = x^k && val = a[0] + a[1]*x + … + a[k]*x^k}
 while (k != n) {
 {inv && k != n}
 xk = xk * x;
 {xk = x^(k+1) && val = a[0] + a[1]*x + … + a[k]*x^k}
 val = val + a[k+1]*xk;
 {xk = x^(k+1) && val = a[0] + a[1]*x + … + a[k+1]*x^(k+1)}
 k = k +1;
 {inv}
 }
 {_____}
 return val;
}

Winter 2013 Q5
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {
 int val = a[0];
 int xk = 1;
 int k = 0;
 int n = a.length-1; // degree of this, n >=0
 {inv: xk = x^k && val = a[0] + a[1]*x + … + a[k]*x^k}
 while (k != n) {
 {inv && k != n}
 xk = xk * x;
 {xk = x^(k+1) && val = a[0] + a[1]*x + … + a[k]*x^k}
 val = val + a[k+1]*xk;
 {xk = x^(k+1) && val = a[0] + a[1]*x + … + a[k+1]*x^(k+1)}
 k = k +1;
 {inv}
 }
 {inv && k = n => val = a[0] + a[1]*x + … + a[n]*x^n}
 return val;
}

Winter 2013 Q6
Suppose we are defining a class to represent items stocked by an online
grocery store. Here is the start of the class definition, including the class
name and instance variables:

public class StockItem {
 String name;
 String size;
 String description;
 int quantity;

 /* Construct a new StockItem */
 public StockItem(…);
}

Winter 2013 Q6
A summer intern was asked to implement an equals function for this class
that treats two StockItem objects as equal if their name and size fields
match. Here’s the result:

/** return true if the name and size fields match */
public boolean equals(StockItem other) {
 return name.equals(other.name) && size.equals(other.size);
}

This equals method seems to work sometimes but not always. Give an
example showing a situation when it fails.

Winter 2013 Q6
A summer intern was asked to implement an equals function for this class
that treats two StockItem objects as equal if their name and size fields
match. Here’s the result:

/** return true if the name and size fields match */
public boolean equals(StockItem other) {
 return name.equals(other.name) && size.equals(other.size);
}

This equals method seems to work sometimes but not always. Give an
example showing a situation when it fails.

Object s1 = new StockItem("thing", 1, "stuff", 1);
Object s2 = new StockItem("thing", 1, "stuff", 1);
System.out.println(s1.equals(s2));

Winter 2013 Q6
A summer intern was asked to implement an equals function for this class
that treats two StockItem objects as equal if their name and size fields
match. Here’s the result:

/** return true if the name and size fields match */
public boolean equals(StockItem other) {
 return name.equals(other.name) && size.equals(other.size);
}

This equals method seems to work sometimes but not always. Give an
example showing a situation when it fails.

Object s1 = new StockItem("thing", 1, "stuff", 1);
Object s2 = new StockItem("thing", 1, "stuff", 1);
System.out.println(s1.equals(s2));

The equals method was overloaded, rather than overwritten

Winter 2013 Q6
Show how you would fix the equals method so it works properly
(StockItems are equal if their names and sizes are equal)

/** return true if the name and size fields match */

Winter 2013 Q6
Show how you would fix the equals method so it works properly
(StockItems are equal if their names and sizes are equal)

/** return true if the name and size fields match */
@ Override
public boolean equals(Object o) {
 if (!(o instanceof StockItem))

return false;
 StockItem other = (StockItem) o;
 return name.equals(other.name) && size.equals(other.size);
}

Winter 2013 Q6
Which of the following implementations of hashCode()
are legal:

public int hashCode() {
 return name.hashCode();
}

public int hashCode() {
 return name.hashCode()*17 + size.hashCode();
}

public int hashCode() {
 return name.hashCode()*17 + quantity;
}

public int hashCode() {
 return quantity;
}

legal illegal

Winter 2013 Q6
Which of the following implementations of hashCode()
are legal:

public int hashCode() {
 return name.hashCode();
}

public int hashCode() {
 return name.hashCode()*17 + size.hashCode();
}

public int hashCode() {
 return name.hashCode()*17 + quantity;
}

public int hashCode() {
 return quantity;
}

legal illegal

O

Winter 2013 Q6
Which of the following implementations of hashCode()
are legal:

public int hashCode() {
 return name.hashCode();
}

public int hashCode() {
 return name.hashCode()*17 + size.hashCode();
}

public int hashCode() {
 return name.hashCode()*17 + quantity;
}

public int hashCode() {
 return quantity;
}

legal illegal

O

O

Winter 2013 Q6
Which of the following implementations of hashCode()
are legal:

public int hashCode() {
 return name.hashCode();
}

public int hashCode() {
 return name.hashCode()*17 + size.hashCode();
}

public int hashCode() {
 return name.hashCode()*17 + quantity;
}

public int hashCode() {
 return quantity;
}

legal illegal

O

O

O

Winter 2013 Q6
Which of the following implementations of hashCode()
are legal:

public int hashCode() {
 return name.hashCode();
}

public int hashCode() {
 return name.hashCode()*17 + size.hashCode();
}

public int hashCode() {
 return name.hashCode()*17 + quantity;
}

public int hashCode() {
 return quantity;
}

legal illegal

O

O

O

O

Winter 2013 Q6
Which of the following implementations of hashCode()
are legal:

public int hashCode() {
 return name.hashCode();
}

public int hashCode() {
 return name.hashCode()*17 + size.hashCode();
}

public int hashCode() {
 return name.hashCode()*17 + quantity;
}

public int hashCode() {
 return quantity;
}

legal illegal

O

O

O

O The equals method does not
care about quantity

Winter 2013 Q6
Which implementation do you prefer?

public int hashCode() {
 return name.hashCode();
}

public int hashCode() {
 return name.hashCode()*17 + size.hashCode();
}

Winter 2013 Q6
Which implementation do you prefer?

public int hashCode() {
 return name.hashCode();
}

public int hashCode() {
 return name.hashCode()*17 + size.hashCode();
}

(ii) will likely do the best job since it takes into account both the size and name
fields. (i) is also legal but it gives the same hashCode for StockItems that have
different sizes as long as they have the same name, so it doesn’t differentiate
between different StockItems as well as (ii).

Winter 2013 Q7
(not on your midterm)

Suppose we are specifying a method and we have a choice between
either requiring a precondition (e.g., @requires: n > 0) or specifying that
the method throws an exception under some circumstances (e.g., @throws
IllegalArgumentException if n <= 0).
Assuming that neither version will be significantly more expensive to
implement than the other and that we do not expect the precondition to be
violated or the exception to be thrown in normal use, is there any reason to
prefer one of these to the other, and, if so, which one?

Winter 2013 Q7
(not on your midterm)

Suppose we are specifying a method and we have a choice between
either requiring a precondition (e.g., @requires: n > 0) or specifying that
the method throws an exception under some circumstances (e.g., @throws
IllegalArgumentException if n <= 0).
Assuming that neither version will be significantly more expensive to
implement than the other and that we do not expect the precondition to be
violated or the exception to be thrown in normal use, is there any reason to
prefer one of these to the other, and, if so, which one?

It would be better to specify the exception. That reduces the domain of
inputs for which the behavior of the method is unspecified. It also will
cause the method to fail fast for incorrect input, which should make the
software more robust – or at least less likely to continue execution with
erroneous data.

Note: You could just as easily argue the other way. It may be better to
specify the precondition because once the exception is in the
specification, it has to stay there because the client may expect it.

Winter 2013 Q8
Suppose we are trying to choose between two possible specifications for a
method. One of the specifications S is stronger than the other specification
W, but both include the behavior needed by clients. In practice, should we
always pick the stronger specification S, always pick the weaker one W, or is
it possible that either one might be the suitable choice? Give a brief
justification of your answer, including a brief list of the main criteria to be
used in making the decision.

Winter 2013 Q8
Suppose we are trying to choose between two possible specifications for a
method. One of the specifications S is stronger than the other specification
W, but both include the behavior needed by clients. In practice, should we
always pick the stronger specification S, always pick the weaker one W, or is
it possible that either one might be the suitable choice? Give a brief
justification of your answer, including a brief list of the main criteria to be
used in making the decision.

Neither is necessarily better. What is important is picking a specification that
is simple, promotes modularity and reuse, and can be implemented
efficiently.
(Many answers focused narrowly on which would be easier to implement.
While that is important – we don’t want a specification that is impossible to
build – it isn’t the main thing that determines whether a system design is
good or bad.)

Midterm Topics
• Reasoning about Code
• Specification vs. Implementation
• Abstract Data Types
• Abstract Functions
• Representation Invariants
• Testing
• Identity & Equality

