
Warmup

["hip","hip"]
=

??? Hip Hip Array!

Slides by Alex Mariakakis

with material from Krysta Yousoufian,
Mike Ernst, Kellen Donohue

Section 3:
HW4, ADTs, and more

Agenda
• HW4 setup
• Abstract data types (ADTs)
• Method specifications

HW#4 DEMO

Polynomial Addition

 3x5 + 5x4 - 2x3 - x2 + x + 0

3x5 - 2x3 + x – 5 +

(5x4 + 4x3 - x2 + 5) (3x5 - 2x3 + x – 5) +

5x4 + 4x3 - x2 + 5 + 0x

+ 0x2 + 0x4

Polynomial Multiplication

+

4x4 -21x3 + 5x2 + 5x - 25

 -20x3 + 5x2 – 25

4x3 - x2 + 5

x – 5 *

(4x3 - x2 + 5) (x – 5) *

4x4 -x3 + 5x

Polynomial Division

5x6 + 4x4 – x3 + 5 x3 - 2x – 5

(5x6 + 4x4 – x3 + 5) (x3 - 2x – 5) /

Polynomial Division

5 0 4 -1 0 0 5 1 0 -2 -5

0 28 118 125
 24 0 -48 -120
24 28 70 5

14 0 -28 -70

5 0 -10 -25 -

 0 14 24 0
 0 0 0 0 -

14 24 0 0
-

-

5 0 14 24

5x3 + 14x + 24

28x2 + 118x + 125
+

x3 - 2x – 5

ADT Example: Line
Suppose we want to make a Line class that

represents lines on the Cartesian plane

.

See http://courses.cs.washington.edu/courses/cse331/13au
/conceptual-info/specifications.html for more

.

Definitions
• Abstract Value: what an instance of a class is

supposed to represent
o Line represents a given line

• Abstract State: the information that defines the
abstract value
o Each line has a start point and an end point

• Abstract Invariant: the conditions that must remain
true over the abstract state for all instances
o Start point and end point must be distinct

Definitions (cont.)
• Specification Fields: describes components of the

abstract state of a class
o Line has specification fields startPoint, endPoint

• Derived Specification Fields: information that can
be derived from specification fields but useful to
have
o length = sqrt((x1-x2)^2 + (y1-y2)^2)

ADT Example: Line
/**

 * This class represents the mathematical concept of a line segment.

 *

 * Specification fields:

 * @specfield start-point : point // The starting point of the line.

 * @specfield end-point : point // The ending point of the line.

 *

 * Derived specification fields:

 * @derivedfield length : real // The length of the line.

 *

 * Abstract Invariant:

 * A line's start-point must be different from its end-point.

 */

public class Line {

…

}

ADT Example: Line
/**

 * This class represents the mathematical concept of a line segment.
 *

 * Specification fields:

 * @specfield start-point : point // The starting point of the line.

 * @specfield end-point : point // The ending point of the line.

 *

 * Derived specification fields:

 * @derivedfield length : real // The length of the line.

 *

 * Abstract Invariant:

 * A line's start-point must be different from its end-point.

 */

public class Line {

…

}

Abstract Value

ADT Example: Line
/**

 * This class represents the mathematical concept of a line segment.

 *

 * Specification fields:

 * @specfield start-point : point // The starting point of the line.
 * @specfield end-point : point // The ending point of the line.
 *

 * Derived specification fields:

 * @derivedfield length : real // The length of the line.

 *

 * Abstract Invariant:

 * A line's start-point must be different from its end-point.

 */

public class Line {

…

}

Abstract State

ADT Example: Line
/**

 * This class represents the mathematical concept of a line segment.

 *

 * Specification fields:

 * @specfield start-point : point // The starting point of the line.

 * @specfield end-point : point // The ending point of the line.

 *

 * Derived specification fields:

 * @derivedfield length : real // The length of the line.

 *

 * Abstract Invariant:
 * A line's start-point must be different from its end-point.
 */

public class Line {

…

}

Abstract Invariant

ADT Example: Line
/**

 * This class represents the mathematical concept of a line segment.

 *

 * Specification fields:
 * @specfield start-point : point // The starting point of the line.
 * @specfield end-point : point // The ending point of the line.
 *

 * Derived specification fields:

 * @derivedfield length : real // The length of the line.

 *

 * Abstract Invariant:

 * A line's start-point must be different from its end-point.

 */

public class Line {

…

}

Specification Fields

ADT Example: Line
/**

 * This class represents the mathematical concept of a line segment.

 *

 * Specification fields:

 * @specfield start-point : point // The starting point of the line.

 * @specfield end-point : point // The ending point of the line.

 *

 * Derived specification fields:
 * @derivedfield length : real // The length of the line.
 *

 * Abstract Invariant:

 * A line's start-point must be different from its end-point.

 */

public class Line {

…

}

Derived Fields

ADT Example: Circle
Suppose we want to make a Circle class that

represents circles on the Cartesian plane

.

ADT Example: Circle
• Abstract Value:

o Circle represents a given circle

• Abstract State:

• Abstract Invariant
o Option #1: r > 0, center must exist
o Option #2: center and edge must be distinct
o Option #3: corner1 and corner2 must be distinct

ADT Example: Circle
• Specification Fields:

o Option #1: r and center
o Option #2: center and edgePoint
o Option #3: corner1 and corner2

• Derived Specification Fields:
o Circumference
o Diameter
o Area
o …

Abstraction
• Abstract values, state, and invariants specify the

behavior of classes and methods
o What should my class do?

• We have not implemented any of these ADTs yet
o Implementation should not affect abstract state
o As long as Circle represents the circle we are interested in, nobody

cares how it is implemented

Abstract vs. Concrete
• We’ll talk later about representation invariants,

which specify how the abstract invariant is
implemented

• We’ll also discuss how abstraction functions map
the concrete representation of an ADT to the
abstract value

Javadoc Documentation
• Tool made by Oracle for API documentation
• We’ve already seen Javadoc for external class

specification
• Method specifications will describe method

behavior in terms of preconditions and
postconditions

Javadoc Method Tags
• @requires: the statements that must be met by the

method’s caller
• @return: the value returned by the method, if any
• @throws: the exceptions that may be raised, and

under which conditions
• @modifies: the variables that may change

because of the method
• @effects: the side effects of the method

Javadoc Method Tags
• If @requires is not met, anything can happen

o False implies everything

• The conditions for @throws must be a subset of the
precondition
o Ex: If a method @requires x > 0, @throws should not say anything about

x < 0

• @modifies lists what may change, while @effects
indicates how they change
o If a specification field is listed in the @modifies clause but not in the

@effects clause, it may take on any value (provided that it follows the
abstract invariant)

o If you mention a field in @modifies, you should try to specify what
happens in @effects

