Warmup
["hip","hip’]

Hip Hiy Array!

Section 3:
HW4, ADTs, and more

Slides by Alex Mariakakis

with material from Krysta Yousoufian,
Mike Ernst, Kellen Donohue

Agenda

« HW4 setup
« Abstract data types (ADTs)
* Method specifications

HW#4 DEMO

Polynomial Addition

(5x* + 4x® - x2 + 5) + (3x> - 2x3 + x - 5)

5x* + 4x3 - x? + 5

+ 3x° - 2x3 + X -5

3x5 + 5x4 - 2x3 - x2 + X + 0

Polynomial Multiplication

(4x3 - x2 + 5) * (x - 5)

4x3 - x2 + 5

X -5

-20x3 + 5x?2 - 25
+ 4x* -x3 + 5X

4x* -21x3 + 5x% + 5x - 25

Polynomial Division

Polynomial Division

5 0 14 24
(5% + 4x* - x3 + 5) / (x3 - 2x - 5)
10-2—5‘504—1005
x3 - 2x - 5 ‘ 5x6 + 4x* - x3 + 5 - 0 -10 -25
© 14 24 o
-0 © 0 0
14 24 © ©
5x3 + 14x + 24
- 14 © -28 -70
28x2 + 118x + 125
i 24 28 70 5
R ° . 24 @ -48 -120
© 28 118 125
ADT Example: Line Definitions

Suppose we want to make a Line class that
represents lines on the Cartesian plane

See http://courses.cs.washington.edu/courses/cse331/13au
conceptual-info/specifications.html for more

Abstract Value: what an instance of a class is
supposed to represent

o Line represents a given line
Abstract State: the information that defines the
abstract value

o Eachline has a start point and an end point

Abstract Invariant: the conditions that must remain

tfrue over the abstract state for all instances
o Start point and end point must be distinct

Definitions (cont.)

» Specification Fields: describes components of the

abstract state of a class
o Line has specification fields startPoint, endPoint

» Derived Specification Fields: information that can
be derived from specification fields but useful to

have
o length = sqgrt((x1-x2)"2 + (yl-y2)"2)

/xx

ADT Example: Line

* This class represents the mathematical concept of a line segment.

*

* Specification fields:

*

* ok ok k *

*

*
*/
pub

}

@specfield start-point : point // The starting point of the line.
@specfield end-point : point // The ending point of the line.
Derived specification fields:
@derivedfield length : real // The length of the line.
Abstract Invariant:

A line's start-point must be different from its end-point.

lic class Line {

ADT Example: Line

* This class represents the mathematical concept of a line segment.

*

Jx*

* Specification fields:
* (@specfield start-point : point // The starting point of the line.
* @specfield end-point : point // The ending point of the line.
*
* Derived specification fields:
* @derivedfield length : real // The length of the line.
*
* Abstract Invariant:
* A line's start-point must be different from its end-point.
*/
public class Line {

Abstract Value

ADT Example: Line

* This class represents the mathematical concept of a line segment.
*
* Specification fields:
* (@specfield start-point : point // The starting point of the line.
* @specfield end-point : point // The ending point of the line.
*
* Derived specification fields:
* @derivedfield length : real // The length of the line.
*
* Abstract Invariant:
* A line's start-point must be different from its end-point.
*/
public class Line {

Abstract State

ADT Example: Line

* This class represents the mathematical concept of a line segment.

*

Viss

* Specification fields:
* @specfield start-point : point // The starting point of the line.
* @specfield end-point : point // The ending point of the line.
*
* Derived specification fields:
* @derivedfield length : real // The length of the line.
*
* Abstract Invariant:
* A line's start-point must be different from its end-point.
=
public class Line {

Abstract Invariant

ADT Example: Line

* This class represents the mathematical concept of a line segment.
*

Viss

* Specification fields:
* (@specfield start-point : point // The starting point of the line.
* @specfield end-point : point // The ending point of the line.

* Derived specification fields:
* @derivedfield length : real // The length of the line.

* Abstract Invariant:
* A line's start-point must be different from its end-point.
=y

public class Line {

Specification Fields

ADT Example: Line

* This class represents the mathematical concept of a line segment.
*

Viss

* Specification fields:
* @specfield start-point : point // The starting point of the line.
* @specfield end-point : point // The ending point of the line.

* Derived specification fields:
* @derivedfield length : real // The length of the line.

* Abstract Invariant:
* A line's start-point must be different from its end-point.
*/

public class Line {

Derived Fields

ADT Example: Circle

Suppose we want to make a circle class that
represents circles on the Cartesian plane

ADT Example: Circle

e Abstract Value:

o Circle represents a given circle

* Abstract State:

edge
center 8

Center

oo

» Absiract Invariant
o Option #1:r> 0, center must exist
o Option #2: center and edge must be distinct
o Option #3: cornerl and corner2 must be distinct

ADT Example: Circle

» Specification Fields:
o Option #1: r and center
o Option #2: center and edgePoint
o Opftion #3: cornerl and corner?2

» Derived Specification Fields:
o Circumference
o Diameter
o Area

-

Abstraction

* Abstract values, state, and invariants specify the
behavior of classes and methods
o What should my class do?

* We have not implemented any of these ADTs yet

o Implementation should not affect abstract state
o Aslong as Circle represents the circle we are interested in, nobody
cares how it is implemented

Abstract vs. Concrete

« We'll talk later about representation invariants,
which specify how the abstract invariant is
implemented

« We'll also discuss how abstraction functions map
the concrete representation of an ADT o the
abstract value

Javadoc Documentation

» Tool made by Oracle for APl documentation

« We've dlready seen Javadoc for external class
specification

+ Method specifications will describe method
behavior in terms of preconditions and
postconditions

Javadoc Method Tags

* Qrequires: the statements that must be met by the
method’s caller

* Qreturn: the value returned by the method, if any

* @throws: the exceptions that may be raised, and
under which condifions

* @modifies: fhe variables that may change
because of the method

+ @effects: the side effects of the method

Javadoc Method Tags

If @requires is not met, anything can happen
o False implies everything
The conditions for @throws must be a subset of the

precondifion

o ExtIfamethod @requires x > 0, @throws should not say anything about
x<0

@modifies lists what may change, while Reffects

indicates how they change
o If aspecification field is listed in the @modifies clause but nofin the
Reffects clause, it may take on any value (provided that it follows the
abstract invariant)
o If you mention a field in @modifies, you should try fo specify what
happensin Geffects

