Section 1: Debugging + Code Reasoning

Alex Mariakakis cse331-staff@cs.washington.edu (staff-wide)

Outline

- Introduction
- Reasoning about code
- IDEs Eclipse
- Debugging

Reasoning About Code

Two purposes

 Prove our code is correct
 Understand why code is correct

- Forward reasoning: determine what follows from initial conditions
- Backward reasoning: determine sufficient conditions to obtain a certain result

Forward Reasoning

// {x >= 0, y >= 0}
y = 16;
//
x = x + y
//
x = sqrt(x)
//
y = y - x
//

Forward Reasoning

// {x >= 0, y >= 0} y = 16; // {x >= 0, y = 16} x = x + y // x = sqrt(x) // y = y - x //

Forward Reasoning

// {x >= 0, y >= 0} y = 16; // {x >= 0, y = 16} x = x + y // {x >= 16, y = 16} x = sqrt(x) // y = y - x //

<pre> Forward Reasoning // {x >= 0, y >= 0} y = 16; // {x >= 0, y = 16} x = x + y // {x >= 16, y = 16} x = sqrt(x) // {x >= 4, y = 16} y = y - x // </pre>	$ \begin{array}{l} Forward Reasoning \\ // \{x \ge 0, y \ge 0\} \\ y = 16; \\ // \{x \ge 0, y = 16\} \\ x = x + y \\ // \{x \ge 16, y = 16\} \\ x = sqrt(x) \\ // \{x \ge 4, y = 16\} \\ y = y - x \\ // \{x \ge 4, y <= 12\} \end{array} $
<pre> Forward Reasoning // {true} if (x>0) { dbs = x // abs = -x // } </pre>	<pre>Forward Reasoning // {true} if (x>0) { // {x > 0} abs = x // } else { // {x <= 0} abs = -x // } //</pre>
<pre>Forward Reasoning // {true} if (x>0) { // {x > 0} abs = x // {x > 0, abs = x} } else { // {x <= 0} abs = -x // {x <= 0, abs = -x} } // {x <= 0, abs = -x}</pre>	<pre>Forward Reasoning // {true} if (x>0) { // {x > 0} abs = x // {x > 0, abs = x} } else { // {x <= 0} abs = -x // {x <= 0, abs = -x} } // {x <= 0, abs = x or x <= 0, abs = -x} // {x > 0, abs = x or x <= 0, abs = -x}</pre>

Forward Reasoning **Backward Reasoning** // {true} 11 if (x>0) { $\mathbf{a} = \mathbf{x} + \mathbf{b};$ $// \{x > 0\}$ 11 abs = x $// \{x > 0, abs = x\}$ c = 2b - 4} 11 else { $\mathbf{x} = \mathbf{a} + \mathbf{c}$ // {x <= 0} abs = -x $// \{x > 0\}$ $// \{x \le 0, abs = -x\}$ } $// \{x > 0, abs = x OR x \le 0, abs = -x\}$ $// \{abs = |x|\}$ **Backward Reasoning Backward Reasoning** 11 11 $\mathbf{a} = \mathbf{x} + \mathbf{b};$ $\mathbf{a} = \mathbf{x} + \mathbf{b};$ 11 $// \{a + 2b - 4 > 0\}$ c = 2b - 4c = 2b - 4 $// \{a + c > 0\}$ $// \{a + c > 0\}$ x = a + c $\mathbf{x} = \mathbf{a} + \mathbf{c}$ $// \{x > 0\}$ $// \{x > 0\}$ Implication **Backward Reasoning** $// \{x + 3b - 4 > 0\}$ Hoare triples are just an $P \rightarrow Q$ extension of logical implication a = x + b;Т Т • Hoare triple: {P} S {Q} T F $// \{a + 2b - 4 > 0\}$ \circ P \rightarrow Q after statement S F T c = 2b - 4F F $// \{a + c > 0\}$

x = a + c// {x > 0}

Implication

- Hoare triples are just an extension of logical implication

 Hoare triple: {P} S {Q}
 P → Q after statement S
- Everything implies true
- False implies everything

Q	$\boldsymbol{P} \to \boldsymbol{Q}$
Т	Т
F	F
Т	Т
F	Т
	T F T

Weaker vs. Stronger

- If P1 → P2, then
 P1 is stronger than P2
 P2 is weaker than P1
- Weaker statements are more general, stronger statements say more
- Stronger statements are more restrictive
- Ex: $\mathbf{x} = \mathbf{16}$ is stronger than $\mathbf{x} > \mathbf{0}$
- Ex: "Alex is an awesome TA" is stronger than "Alex is a TA"

Weakest Precondition

- The most lenient assumptions such that a postcondition will be satisfied
- If P* is the weakest precondition for {P} S {Q}, then $P \rightarrow P^*$ for all P that make the Hoare triple valid
- WP = wp(S, Q), which can be found using backward reasoning

 Ex: wp(x = y+4, x > 0) = y+4>0

What is Eclipse?

- Integrated development environment (IDE)
- Allows for software development from start to finish
 - Type code with syntax highlighting, warnings, etc.
 - Run code straight through or with breakpoints (debug)Break code
- Mainly used for Java

 Supports C, C++, JavaScript, PHP, Python, Ruby, etc.
- Alternatives
 NetBeans, Visual Studio, IntelliJIDEA

Eclipse shortcuts

Shortcut	Purpose
Ctrl + D	Delete an entire line
Alt + Shift + R	Refactor (rename)
Ctrl + Shift + O	Clean up imports
Ctrl + /	Toggle comment
Ctrl + Shift + F	Make my code look nice ©

Eclipse Debugging

- System.out.println() works for debugging...
 - It's quickIt's dirty
 - Everyone knows how to do it
- ...but there are drawbacks
 - What if I'm printing something that's null?
 - What if I want to look at something that can't easily be printed (e.g., what does my binary search tree look like now)?
- Eclipse's debugger is powerful...if you know how to use it

.

.

.

