
Section 1:
Debugging +

Code Reasoning

Alex Mariakakis

cse331-staff@cs.washington.edu (staff-wide)

mailto:cse331-staff@cs.washington.edu
mailto:cse331-staff@cs.washington.edu
mailto:cse331-staff@cs.washington.edu

Outline
• Introduction

• Reasoning about code

• IDEs – Eclipse

• Debugging

Reasoning About Code
• Two purposes

o Prove our code is correct

o Understand why code is correct

• Forward reasoning: determine what follows from

initial conditions

• Backward reasoning: determine sufficient

conditions to obtain a certain result

Forward Reasoning
// {x >= 0, y >= 0}

y = 16;

//

x = x + y

//

x = sqrt(x)

//

y = y - x

//

Forward Reasoning
// {x >= 0, y >= 0}

y = 16;

// {x >= 0, y = 16}

x = x + y

//

x = sqrt(x)

//

y = y - x

//

Forward Reasoning
// {x >= 0, y >= 0}

y = 16;

// {x >= 0, y = 16}

x = x + y

// {x >= 16, y = 16}

x = sqrt(x)

//

y = y - x

//

Forward Reasoning
// {x >= 0, y >= 0}

y = 16;

// {x >= 0, y = 16}

x = x + y

// {x >= 16, y = 16}

x = sqrt(x)

// {x >= 4, y = 16}

y = y - x

//

Forward Reasoning
// {x >= 0, y >= 0}

y = 16;

// {x >= 0, y = 16}

x = x + y

// {x >= 16, y = 16}

x = sqrt(x)

// {x >= 4, y = 16}

y = y - x

// {x >= 4, y <= 12}

Forward Reasoning
// {true}

if (x>0) {

 //

 abs = x

 //

}

else {

 //

 abs = -x

 //

}

//

//

Forward Reasoning
// {true}

if (x>0) {

 // {x > 0}

 abs = x

 //

}

else {

 // {x <= 0}

 abs = -x

 //

}

//

//

Forward Reasoning
// {true}

if (x>0) {

 // {x > 0}

 abs = x

 // {x > 0, abs = x}

}

else {

 // {x <= 0}

 abs = -x

 // {x <= 0, abs = -x}

}

//

//

Forward Reasoning
// {true}

if (x>0) {

 // {x > 0}

 abs = x

 // {x > 0, abs = x}

}

else {

 // {x <= 0}

 abs = -x

 // {x <= 0, abs = -x}

}

// {x > 0, abs = x OR x <= 0, abs = -x}

//

Forward Reasoning
// {true}

if (x>0) {

 // {x > 0}

 abs = x

 // {x > 0, abs = x}

}

else {

 // {x <= 0}

 abs = -x

 // {x <= 0, abs = -x}

}

// {x > 0, abs = x OR x <= 0, abs = -x}

// {abs = |x|}

Backward Reasoning
//

a = x + b;

//

c = 2b - 4

//

x = a + c

// {x > 0}

Backward Reasoning
//

a = x + b;

//

c = 2b - 4

// {a + c > 0}

x = a + c

// {x > 0}

Backward Reasoning
//

a = x + b;

// {a + 2b – 4 > 0}

c = 2b - 4

// {a + c > 0}

x = a + c

// {x > 0}

Backward Reasoning
// {x + 3b - 4 > 0}

a = x + b;

// {a + 2b – 4 > 0}

c = 2b - 4

// {a + c > 0}

x = a + c

// {x > 0}

Implication
• Hoare triples are just an

extension of logical implication
o Hoare triple: {P} S {Q}

o P → Q after statement S

P Q P → Q

T T

T F

F T

F F

Implication
• Hoare triples are just an

extension of logical implication
o Hoare triple: {P} S {Q}

o P → Q after statement S

• Everything implies true

• False implies everything

P Q P → Q

T T T

T F F

F T T

F F T

Weaker vs. Stronger
• If P1 → P2, then

o P1 is stronger than P2

o P2 is weaker than P1

• Weaker statements are more general, stronger

statements say more

• Stronger statements are more restrictive

• Ex: x = 16 is stronger than x > 0

• Ex: “Alex is an awesome TA” is stronger than
“Alex is a TA”

Weakest Precondition
• The most lenient assumptions such that a

postcondition will be satisfied

• If P* is the weakest precondition for {P} S {Q}, then

P → P* for all P that make the Hoare triple valid

• WP = wp(S, Q), which can be found using

backward reasoning
o Ex: wp(x = y+4, x > 0) = y+4>0

What is Eclipse?
• Integrated development environment (IDE)

• Allows for software development from start to

finish
o Type code with syntax highlighting, warnings, etc.

o Run code straight through or with breakpoints (debug)

o Break code

• Mainly used for Java
o Supports C, C++, JavaScript, PHP, Python, Ruby, etc.

• Alternatives
o NetBeans, Visual Studio, IntelliJIDEA

Eclipse shortcuts
Shortcut Purpose

Ctrl + D Delete an entire line

Alt + Shift + R Refactor (rename)

Ctrl + Shift + O Clean up imports

Ctrl + / Toggle comment

Ctrl + Shift + F Make my code look nice

Eclipse Debugging
• System.out.println() works for debugging…

o It’s quick

o It’s dirty

o Everyone knows how to do it

• …but there are drawbacks
o What if I’m printing something that’s null?

o What if I want to look at something that can’t easily be printed

(e.g., what does my binary search tree look like now)?

• Eclipse’s debugger is powerful…if you know how to

use it

Eclipse Debugging

Double click in the gray area to the left of your code to set a
breakpoint. A breakpoint is a line that the Java VM will stop at
during normal execution of your program, and wait for action from
you.

Eclipse Debugging

Click the Bug icon to run in Debug
mode. Otherwise your program
won’t stop at your breakpoints.

Eclipse Debugging

Controlling your program
while debugging is done
with these buttons

Eclipse Debugging

Play, pause, stop work just
like you’d expect

Eclipse Debugging

Step Into

Steps into the method at the
current execution point – if
possible. If not possible then
just proceeds to the next
execution point.

If there’s multiple methods
at the current execution
point step into the first one
to be executed.

Eclipse Debugging

Step Over

Steps over any method calls at
the current execution point.

Theoretically program proceeds
just to the next line.

BUT, if you have any breakpoints
set that would be hit in the
method(s) you stepped over,
execution will stop at those
points instead.

Eclipse Debugging

Step Out

Allows method to finish and
brings you up to the point
where that method was called.

Useful if you accidentally step
into Java internals (more on
how to avoid this next).

Just like with step over though
you may hit a breakpoint in the
remainder of the method, and
then you’ll stop at that point.

Eclipse Debugging

Enable/disable step filters

There’s a lot of code you don’t
want to enter when debugging,
internals of Java, internals of
JUnit, etc.

You can skip these by
configuring step filters.

Checked items are skipped.

Eclipse Debugging

Stack Trace

Shows what methods have
been called to get you to
current point where program
is stopped.

You can click on different
method names to navigate
to that spot in the code
without losing your current
spot.

Eclipse Debugging

Variables Window

Shows all variables, including
method parameters, local
variables, and class variables,
that are in scope at the current
execution spot. Updates when
you change positions in the
stackframe. You can expand
objects to see child member
values. There’s a simple value
printed, but clicking on an item
will fill the box below the list
with a pretty format.

Some values are in the form of
ObjectName (id=x), this can be
used to tell if two variables are
reffering to the same object.

Eclipse Debugging

Variables that have changed
since the last break point are
highlighted in yellow.

You can change variables right
from this window by double
clicking the row entry in the
Value tab.

Eclipse Debugging

Variables that have changed
since the last break point are
highlighted in yellow.

You can change variables right
from this window by double
clicking the row entry in the
Value tab.

Eclipse Debugging

There’s a powerful right-click
menu.

• See all references to a given

variable
• See all instances of the

variable’s class
• Add watch statements for

that variables value (more
later)

Eclipse Debugging

Show Logical Structure

Expands out list items so it’s as
if each list item were a field (and
continues down for any children
list items)

Eclipse Debugging

Breakpoints Window

Shows all existing breakpoints in
the code, along with their
conditions and a variety of
options.

Double clicking a breakpoint will
take you to its spot in the code.

Eclipse Debugging

Enabled/Disabled Breakpoints

Breakpoints can be temporarily
disabled by clicking the
checkbox next to the
breakpoint. This means it won’t
stop program execution until re-
enabled.

This is useful if you want to hold
off testing one thing, but don’t
want to completely forget about
that breakpoint.

Eclipse Debugging

Hit count

Breakpoints can be set to occur
less-frequently by supplying a
hit count of n.

When this is specified, only each
n-th time that breakpoint is hit
will code execution stop.

Eclipse Debugging

Conditional Breakpoints

Breakpoints can have
conditions. This means the
breakpoint will only be triggered
when a condition you supply is
true. This is very useful for
when your code only breaks on
some inputs!

Watch out though, it can make
your code debug very slowly,
especially if there’s an error in
your breakpoint.

Eclipse Debugging

Disable All Breakpoints

You can disable all breakpoints
temporarily. This is useful if
you’ve identified a bug in the
middle of a run but want to let
the rest of the run finish
normally.

Don’t forget to re-enable
breakpoints when you want to
use them again.

Eclipse Debugging

Break on Java Exception

Eclipse can break whenever a
specific exception is thrown.
This can be useful to trace an
exception that is being
“translated” by library code.

Eclipse Debugging

Expressions Window

Used to show the results of custom
expressions you provide, and can
change any time.

Not shown by default but highly
recommended.

Eclipse Debugging

Expressions Window

Used to show the results of custom
expressions you provide, and can
change any time.

Resolves variables, allows method
calls, even arbitrary statements
“2+2”

Beware method calls that mutate
program state – e.g. stk1.clear() or
in.nextLine() – these take effect
immediately

Eclipse Debugging

Expressions Window

These persist across projects, so
clear out old ones as necessary.

Eclipse Debugging

Demo!!!

Eclipse Debugging
• The debugger is awesome, but not perfect

o Not well-suited for time-dependent code

o Recursion can get messy

• Technically, we talked about a “breakpoint

debugger”
o Allows you to stop execution and examine variables

o Useful for stepping through and visualizing code

o There are other approaches to debugging that don’t involve a

debugger

