Reasoning about code

Determine what facts are true as a program executes
– Under what assumptions

Examples:
– If \(x\) starts positive, then \(y\) is 0 when the loop finishes
– Contents of the array \(arr\) refers to are sorted
– Except at one code point, \(x + y = z\)
– For all instances of \(Node\ n\),
 \[n.next == null \lor n.next.prev == n\]
– ...

Why do this?

• Essential complement to testing, which we will also study
 – Testing: Actual results for some actual inputs
 – Logical reasoning: Reason about whole classes of inputs/states at once ("If \(x > 0\), ...")
 • Prove a program correct (or find bugs trying)
 • Understand why code is correct

• Stating assumptions is the essence of specification
 – "Callers must not pass null as an argument"
 – "Callee will always return an unaliased object"
 – ...

Our approach

• Hoare Logic: a 1970s approach to logical reasoning about code
 – For now, consider just variables, assignments, if-statements, while-loops
 • So no objects or methods

• This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

• Next lecture: Loops

Example

Forward reasoning:
– Suppose we initially know (or assume) \(w > 0\)
 \[
 \begin{align*}
 &w > 0 \\
 &x = 17; \\
 &y = 42; \\
 &z = w + x + y;
 \end{align*}
 \]
– Then we know various things after, including \(z > 59\)

This is all essential for specifying library-interfaces, which does happen All the Time in The Real World (coming lectures)
Example

Backward reasoning:
- Suppose we want \(z \) to be negative at the end

  ```plaintext
  // w + 17 + 42 < 0
  x = 17;
  // w + x + 42 < 0
  y = 42;
  // w + x + y < 0
  z = w + x + y;
  // z < 0
  ```

- Then we know initially we need to know/assume \(w < -59 \)
 - Necessary and sufficient

Forward vs. Backward, Part 1

- Forward reasoning:
 - Determine what follows from initial assumptions
 - Most useful for maintaining an invariant

- Backward reasoning
 - Determine sufficient conditions for a certain result
 - If result desired, the assumptions suffice for correctness
 - If result undesired, the assumptions suffice to trigger bug

Forward vs. Backward, Part 2

- Forward reasoning:
 - Simulates the code (for many “inputs” “at once”)
 - Often more intuitive
 - But introduces [many] facts irrelevant to a goal

- Backward reasoning
 - Often more useful: Understand what each part of the code contributes toward the goal
 - “Thinking backwards” takes practice but gives you a powerful new way to reason about programs

Conditionals

```plaintext
// initial assumptions
if(...) {
  ... // also know test evaluated to true
} else {
  ... // also know test evaluated to false
} // either branch could have executed
```

Two key ideas:
1. The precondition for each branch includes information about the result of the test-expression
2. The overall postcondition is the disjunction (“or”) of the postcondition of the branches

Example (Forward)

Assume initially \(x \geq 0 \)

  ```plaintext
  // x >= 0
  z = 0;
  // x > 0 \land z = 0
  if(x != 0) {
    // x > 0 \land z = 0 \land x != 0 (so x > 0)
    z = x;
    // ... \land z > 0
  } else {
    // x > 0 \land z = 0 \land !x=0 (so x = 0)
    z = x + 1;
    // ... \land z = 1
  }
  // ( ... \land z > 0) \lor ( ... \land z = 1) (so z > 0)
  ```

Our approach

- Hoare Logic, a 1970s approach to logical reasoning about code
 - [Named after its inventor, Tony Hoare]
 - Considering just variables, assignments, if-statements, while-loops
 - So no objects or methods

- This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

- Next lecture: Loops
Some notation and terminology

- The “assumption” before some code is the **precondition**
- The “what holds after (given assumption)” is the **postcondition**
- Instead of writing pre/postconditions after //, write them in {...}
 - This is not Java
 - How Hoare logic has been written “on paper” for 40ish years

    ```
    { w < -59 }
    x = 17;
    { w + x < -42 }
    y = 42;
    { w > 0 ∧ x = 17 ∧ y = 42 }
    ```

What an assertion means

- An **assertion** (pre/postcondition) is a logical formula that can refer to program state (e.g., contents of variables)
- A **program state** is something that “given” a variable can “tell you” its contents
 - Or any expression that has no **side-effects**
- An assertion **holds** for a program state, if evaluating using the program state produces true
 - Evaluating a program variable produces its contents in the state
 - Can think of an assertion as representing the set of (exactly the) states for which it holds

A Hoare Triple

- A **Hoare triple** is two assertions and one piece of code:

  ```
  { P } S { Q }
  ```

 - P the **precondition**
 - S the code (statement)
 - Q the **postcondition**

- A Hoare triple \{ P \} S \{ Q \} is (by definition) **valid** if:
 - For all states for which P holds, executing S always produces a state for which Q holds
 - Less formally: If P is true before S, then Q must be true after
 - Else the Hoare triple is **invalid**

Examples

Valid or invalid?

- (Assume all variables are integers without overflow)

  ```
  \{ x \neq 0 \} y = x^2; \{ y > 0 \}
  \{ z \neq 1 \} y = z^2; \{ y \neq z \}
  \{ x \geq 0 \} y = 2^x; \{ y > x \}
  \{ true \} \{ if(x > 7) \{ y=4; \} else \{ y=3; \} \} \{ y < 5 \}
  ```

- (true) \{ x = y; z = x; \} \{ y=z \}

  ```
  \{ x=7 ∧ y=5 \}
  (tmp=x; x=tmp; y=x;)
  \{ y=7 ∧ x=5 \}
  ```

Aside: assert in Java

- An assertion in Java is a statement with a Java expression, e.g.,
  ```
  assert x > 0 && y < x;
  ```
- Similar to our assertions
 - Evaluate using a program state to get true or false
 - Uses Java syntax
- In Java, this is a run-time thing: Run the code and raise an exception if assertion is violated
 - Unless assertion-checking is disabled
 - Later course topic
- This week: we are reasoning about the code, not running it on some input
The general rules

- So far: Decided if a Hoare triple was valid by using our understanding of programming constructs
- Now: For each kind of construct there is a general rule
 - A rule for assignment statements
 - A rule for two statements in sequence
 - A rule for conditionals
 - [next lecture:] A rule for loops
 - ...

Assignment statements

\{P\} x = e; \{Q\}

- Let Q' be like Q except replace every x with e
- Triple is valid if:
 For all program states, if P holds, then Q' holds
 - That is, P implies Q', written P => Q'
- Example: \{z > 34\} y=z+1; \{y > 1\}
 - Q' is \{z+1 > 1\}

Sequences

\{P\} S1;S2 \{Q\}

- Triple is valid if and only if there is an assertion R such that
 - \{P\}S1\{R\} is valid, and
 - \{R\}S2\{Q\} is valid
- Example: \{z >= 1\} y=z+1; w=y*y; \{w > y\} (integers)
 - Let R be \{y > 1\}
 - Show \{z >= 1\} y=z+1; \{y > 1\}
 - Use rule for assignments: z >= 1 implies z+1 > 1
 - Show \{y > 1\} w=y*y; \{w > y\}
 - Use rule for assignments: y > 1 implies y*y > y

Conditionals

\{P\} if(b) S1 else S2 \{Q\}

- Triple is valid if and only if there are assertions Q1,Q2 such that
 - \{P \land b\}S1\{Q1\} is valid, and
 - \{P \land \neg b\}S2\{Q2\} is valid, and
 - Q1 \lor Q2 implies Q
- Example: \{true\} (if(x > 7) y=x; else y=20;) \{y > 5\}
 - Let Q1 be \{y > 7\} (other choices work too)
 - Let Q2 be \{y = 20\} (other choices work too)
 - Use assignment rule to show \{true \land x > 7\}y=x;\{y>7\}
 - Use assignment rule to show \{true \land x <= 7\}y=20;\{y=20\}
 - Indicate \ y > 7 \lor y = 20 \implies y > 5

Our approach

- Hoare Logic, a 1970s approach to logical reasoning about code
 - Considering just variables, assignments, if-statements, while-loops
 - So no objects or methods
- This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition
- Next lecture: Loops

Weaker vs. Stronger

If P1 implies P2 (written P1 => P2), then:
 - P1 is stronger than P2
 - P2 is weaker than P1
- Whenever P1 holds, P2 also holds
- So it is more (or at least as) “difficult” to satisfy P1
 - The program states where P1 holds are a subset of the program states where P2 holds
- So P1 puts more constraints on program states
- So it’s a stronger set of obligations/requirements
Examples

- $x = 17$ is stronger than $x > 0$
- x is prime is neither stronger nor weaker than x is odd
- x is prime and $x > 2$ is stronger than x is odd and $x > 2$
- ...

Why this matters to us

- Suppose:
 - $\{P\}S\{Q\}$, and
 - P is weaker than some P_1, and
 - Q is stronger than some Q_1

- Then: $\{P_1\}S\{Q\}$ and $\{P\}S\{Q_1\}$ and $\{P_1\}S\{Q_1\}$

- Example:
 - P is $x >= 0$
 - P_1 is $x > 0$
 - S is $y = x+1$
 - Q is $y > 0$
 - Q_1 is $y >= 0$

Weakest preconditions

- $\text{wp}(x = e; Q)$ is Q with each x replaced by e
- Example: $\text{wp}(x = y*y; x > 4) = y*y > 4$, i.e., $|y| > 2$
- $\text{wp}(S_1; S_2, Q)$ is $\text{wp}(S_1, \text{wp}(S_2, Q))$
 - i.e., let R be $\text{wp}(S_2, Q)$ and overall wp is $\text{wp}(S_1, R)$
 - Example: $\text{wp}(y=x+1; z=y+1; z = 2) = (z + 1) + 1 > 2$, i.e., $z > 0$
- $\text{wp}(\text{if } b \ S_1 \text{ else } S_2, Q)$ is this logic formula:
 $$ (b \Rightarrow \text{wp}(S_1, Q)) \lor (\neg b \Rightarrow \text{wp}(S_2, Q)) $$
 - (In any state, b will evaluate to either true or false...)
 - (You can sometimes then simplify the result)

Simple examples

- If S is $y*y$ and Q is $x > 4,$
 then $\text{wp}(S, Q)$ is $y*y > 4$, i.e., $|y| > 2$
- If S is $y = x + 1$; $z = y - 3$; and Q is $z = 10$, then $\text{wp}(S, Q) ...$

Bigger example

S is $\text{if } (x < 5) \{$
 $\quad x = x*x;$
 $\}$ else {
 $\quad x = x+1;$
 $\}$
Q is $x >= 9$

$\text{wp}(S, x >= 9)$
 $= (x < 5 \land \text{wp}(x = x*x; x >= 9))$
 $\lor (x >= 5 \land \text{wp}(x = x+1; x >= 9))$
 $= (x < 5 \land x*x >= 9)$
 $\lor (x >= 5 \land x+1 >= 9)$
 $= (x <= -3) \lor (x >= 3 \land x < 5)$
 $\lor (x >= 8)$
If-statements review

Forward reasoning

\[
\begin{align*}
\{P\} & \quad \text{if } B \\
\{P \land B\} & \quad \text{if } B \\
S1 & \quad \{wp(S1, Q)\} \\
\{Q1\} & \quad S1 \\
\text{else} & \quad \{Q\} \\
\{P \land \neg B\} & \quad \text{else} \\
S2 & \quad \{wp(S2, Q)\} \\
\{Q2\} & \quad S2 \\
\{Q1 \lor Q2\} & \quad \{Q\}
\end{align*}
\]

Backward reasoning

\[
\begin{align*}
\{ (B \land wp(S1, Q)) \lor (B \land wp(S2, Q)) \} & \quad \text{if } B \\
\{ wp(S1, Q) \} & \quad \text{if } B \\
\{ Q \} & \quad \text{else} \\
\{ wp(S2, Q) \} & \quad \text{else} \\
\{ Q \} & \quad \{ Q \}
\end{align*}
\]

“Correct”

- If \(wp(S, Q)\) is true, then executing \(S\) will always produce a state where \(Q\) holds
 - true holds for every program state

One more issue

- With forward reasoning, there is a problem with assignment:
 - Changing a variable can affect other assumptions
- Example:
 \[
 \begin{align*}
 \{\text{true}\} \\
w & = x + y; \\
\{w = x + y;\} \\
x & = 4; \\
\{w = x + y \land x = 4\} \\
y & = 3; \\
\{w = x + y \land x = 4 \land y = 3\}
 \end{align*}
 \]
 But clearly we do not know \(w=7\)!

The fix

- When you assign to a variable, you need to replace all other uses of the variable in the post-condition with a different variable
 - So you refer to the “old contents”
- Corrected example:
 \[
 \begin{align*}
 \{\text{true}\} \\
w & = x + y; \\
\{w = x + y;\} \\
x & = 4; \\
\{w = x_1 + y \land x = 4\} \\
y & = 3; \\
\{w = x_1 + y_1 \land x = 4 \land y = 3\}
 \end{align*}
 \]

Useful example

- Swap contents
 - Give a name to initial contents so we can refer to them in the post-condition
 - Just in the formulas: these “names” are not in the program
 - Use these extra variables to avoid “forgetting” “connections”
 \[
 \begin{align*}
 \{x = x_{\text{pre}} \land y = y_{\text{pre}}\} \\
tmp &= x; \\
\{x = x_{\text{pre}} \land y = y_{\text{pre}} \land tmp=x\} \\
x &= y; \\
\{x = y \land y = y_{\text{pre}} \land tmp=x_{\text{pre}}\} \\
y &= tmp; \\
\{x = y_{\text{pre}} \land y = tmp \land tmp=x_{\text{pre}}\}
 \end{align*}
 \]