Reasoning about code

Determine what facts are true as a program executes
 – Under what assumptions

Examples:
 – If x starts positive, then y is 0 when the loop finishes
 – Contents of the array arr refers to are sorted
 – Except at one code point, $x + y == z$
 – For all instances of $Node \ n$,
 \[n.next == null \lor n.next.prev == n \]
 – ...
Why do this?

- Essential complement to *testing*, which we will also study
 - Testing: Actual results for some actual inputs
 - Logical reasoning: Reason about whole classes of inputs/states at once ("If \(x > 0 \), ...")
 - Prove a program correct (or find bugs trying)
 - Understand *why* code is correct

- Stating assumptions is the essence of specification
 - "Callers must not pass \texttt{null} as an argument"
 - "Callee will always return an unaliased object"
 - ...
Our approach

• Hoare Logic: a 1970s approach to logical reasoning about code
 – For now, consider just variables, assignments, if-statements, while-loops
 • So no objects or methods

• This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

• Next lecture: Loops
Why?

• Programmers rarely “use Hoare logic” like in this lecture
 – For simple snippets of code, it’s overkill
 – Gets very complicated with objects and aliasing
 – But is occasionally useful for loops with subtle invariants
 • Examples: Homework 0, Homework 2

• Also it’s an ideal setting for the right logical foundations
 – How can logic “talk about” program states?
 – How does code execution “change what is true”?
 – What do “weaker” and “stronger” mean?

This is all essential for specifying library-interfaces, which does happen All the Time in The Real World (coming lectures)
Example

Forward reasoning:

- Suppose we initially know (or assume) $w > 0$

  ```
  // w > 0
  x = 17;
  // w > 0 ∧ x == 17
  y = 42;
  // w > 0 ∧ x == 17 ∧ y == 42
  z = w + x + y;
  // w > 0 ∧ x == 17 ∧ y == 42 ∧ z > 59
  ...
  ```

- Then we know various things after, including $z > 59$
Example

Backward reasoning:

- Suppose we want z to be negative at the end

  ```
  // w + 17 + 42 < 0
  x = 17;
  // w + x + 42 < 0
  y = 42;
  // w + x + y < 0
  z = w + x + y;
  // z < 0
  ```

- Then we know initially we need to know/assume $w < -59$
 - Necessary and sufficient
Forward vs. Backward, Part 1

• Forward reasoning:
 – Determine what follows from initial assumptions
 – Most useful for maintaining an invariant

• Backward reasoning
 – Determine sufficient conditions for a certain result
 • If result desired, the assumptions suffice for correctness
 • If result undesired, the assumptions suffice to trigger bug
Forward vs. Backward, Part 2

- **Forward reasoning:**
 - Simulates the code (for many “inputs” “at once”)
 - Often more intuitive
 - But introduces [many] facts irrelevant to a goal

- **Backward reasoning**
 - Often more useful: Understand what each part of the code contributes toward the goal
 - “Thinking backwards” takes practice but gives you a powerful new way to reason about programs
Conditionals

// initial assumptions
if (...) {
 ...
 // also know test evaluated to true
} else {
 ...
 // also know test evaluated to false
}
// either branch could have executed

Two key ideas:

1. The precondition for each branch includes information about the result of the test-expression

2. The overall postcondition is the disjunction (“or”) of the postcondition of the branches
Example (Forward)

Assume initially $x \geq 0$

```
// x >= 0
z = 0;
// x >= 0 ∧ z == 0
if(x != 0) {
    // x >= 0 ∧ z == 0 ∧ x != 0 (so x > 0)
    z = x;
    // ... ∧ z > 0
} else {
    // x >= 0 ∧ z == 0 ∧ !(x!=0) (so x == 0)
    z = x + 1;
    // ... ∧ z == 1
}
// ( ... ∧ z > 0) ∨ (... ∧ z == 1) (so z > 0)
```
Our approach

• Hoare Logic, a 1970s approach to logical reasoning about code
 – [Named after its inventor, Tony Hoare]
 – Considering just variables, assignments, if-statements, while-loops
 • So no objects or methods

• This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

• Next lecture: Loops
Some notation and terminology

- The “assumption” before some code is the **precondition**
- The “what holds after (given assumption)” is the **postcondition**
- Instead of writing pre/postconditions after //, write them in {...}
 - This is not Java
 - How Hoare logic has been written “on paper” for 40ish years

    ```
    \{ w < -59 \}
    x = 17;
    \{ w + x < -42 \}
    ```
 - In pre/postconditions, = is equality, not assignment
 - Math’s “=”, which for numbers is Java’s ==

      ```
      \{ w > 0 \land x = 17 \}
      y = 42;
      \{ w > 0 \land x = 17 \land y = 42 \}
      ```
What an assertion means

• An assertion (pre/postcondition) is a logical formula that can refer to program state (e.g., contents of variables)

• A program state is something that “given” a variable can “tell you” its contents
 – Or any expression that has no side-effects

• An assertion holds for a program state, if evaluating using the program state produces true
 – Evaluating a program variable produces its contents in the state
 – Can think of an assertion as representing the set of (exactly the) states for which it holds
A Hoare Triple

- A Hoare triple is two assertions and one piece of code:
 \[\{ P \} \ S \{ Q \} \]
 - \(P \) the precondition
 - \(S \) the code (statement)
 - \(Q \) the postcondition

- A Hoare triple \(\{ P \} \ S \{ Q \} \) is (by definition) valid if:
 - For all states for which \(P \) holds, executing \(S \) always produces a state for which \(Q \) holds
 - Less formally: If \(P \) is true before \(S \), then \(Q \) must be true after
 - Else the Hoare triple is invalid
Examples

Valid or invalid?
– (Assume all variables are integers without overflow)

• \{x \neq 0\} \ y = x^2; \ \{y > 0\}
• \{z \neq 1\} \ y = z^2; \ \{y \neq z\}
• \{x \geq 0\} \ y = 2x; \ \{y > x\}
• \{true\} (if(x > 7) \{y=4;\} else \{y=3;\}) \ \{y < 5\}
• \{true\} (x = y; z = x;) \ \{y=z\}
• \{x=7 \land y=5\}
 (tmp=x; x=tmp; y=x;)
 \{y=7 \land x=5\}
Examples

Valid or invalid?

− (Assume all variables are integers without overflow)

• {x != 0} y = x*x; {y > 0} valid
• {z != 1} y = z*z; {y != z} invalid
• {x >= 0} y = 2*x; {y > x} invalid
• {true} (if(x > 7) {y=4;} else {y=3;}) {y < 5} valid
• {true} (x = y; z = x;) {y=z} valid
• {x=7 ∧ y=5} (tmp=x; x=tmp; y=x;) invalid
{y=7 ∧ x=5}
Aside: assert in Java

• An assertion in Java is a statement with a Java expression, e.g.,
 \[\text{assert } x > 0 \land y < x;\]

• Similar to our assertions
 – Evaluate using a program state to get \textbf{true} or \textbf{false}
 – Uses Java syntax

• In Java, this is a \textit{run-time thing}: Run the code and raise an exception if assertion is violated
 – Unless assertion-checking is disabled
 – Later course topic

• This week: we are reasoning about the code, not running it on some input
The general rules

• So far: Decided if a Hoare triple was valid by using our understanding of programming constructs

• Now: For each kind of construct there is a general rule
 – A rule for assignment statements
 – A rule for two statements in sequence
 – A rule for conditionals
 – [next lecture:] A rule for loops
 – ...
Assignment statements

\{P\} \ x = e; \ \{Q\}

- Let Q’ be like Q except replace every x with e
- Triple is valid if:
 For all program states, if P holds, then Q’ holds
 - That is, P implies Q’, written P \Rightarrow Q’

- Example: \{z > 34\} \ y=z+1; \ {y > 1}
 - Q’ is \{z+1 > 1\}
Sequences

\{P\} S1;S2 {Q}\n
• Triple is valid if and only if there is an assertion \(\mathbf{R}\) such that
 - \(\{P\}S1{R}\) is valid, and
 - \(\{R\}S2{Q}\) is valid

• Example: \(\{z >= 1\} \ y=z+1; \ w=y*y; \ {w > y}\) (integers)
 - Let \(\mathbf{R}\) be \(\{y > 1\}\)
 - Show \(\{z >= 1\} \ y=z+1; \ {y > 1}\)
 • Use rule for assignments: \(z >= 1\) implies \(z+1 > 1\)
 - Show \(\{y > 1\} \ w=y*y; \ {w > y}\)
 • Use rule for assignments: \(y > 1\) implies \(y*y > y\)
Conditionals

\{P\} \text{ if}(b) \text{ S1 else S2 } \{Q\}

- Triple is valid if and only if there are assertions Q_1, Q_2 such that
 - $\{P \land b\} \text{S1} \{Q_1\}$ is valid, and
 - $\{P \land \neg b\} \text{S2} \{Q_2\}$ is valid, and
 - $Q_1 \lor Q_2$ implies Q

- Example: \{true\} (if$(x > 7)$ $y=x;$ else $y=20;$) \{y > 5\}
 - Let Q_1 be \{y > 7\} (other choices work too)
 - Let Q_2 be \{y = 20\} (other choices work too)
 - Use assignment rule to show \{true \land x > 7\} $y=x;$ \{y>7\}
 - Use assignment rule to show \{true \land x \leq 7\} $y=20;$ \{y=20\}
 - Indicate $y>7 \lor y=20$ implies $y>5$
Our approach

- Hoare Logic, a 1970s approach to logical reasoning about code
 - Considering just variables, assignments, if-statements, while-loops
 - So no objects or methods

- This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

- Next lecture: Loops
Weaker vs. Stronger

If P1 implies P2 (written P1 => P2), then:
 – P1 is stronger than P2
 – P2 is weaker than P1

• Whenever P1 holds, P2 also holds
• So it is more (or at least as) “difficult” to satisfy P1
 – The program states where P1 holds are a subset of the program states where P2 holds
• So P1 puts more constraints on program states
• So it’s a stronger set of obligations/requirements
Examples

• \(x = 17 \) is stronger than \(x > 0 \)

• \(x \) is prime is neither stronger nor weaker than \(x \) is odd

• \(x \) is prime and \(x > 2 \) is stronger than \(x \) is odd and \(x > 2 \)

• ...
Why this matters to us

• Suppose:
 – \(\{P\}S\{Q\} \), and
 – \(P \) is weaker than some \(P_1 \), and
 – \(Q \) is stronger than some \(Q_1 \)

• Then: \(\{P_1\}S\{Q\} \) and \(\{P\}S\{Q_1\} \) and \(\{P_1\}S\{Q_1\} \)

• Example:
 – \(P \) is \(x \geq 0 \)
 – \(P_1 \) is \(x > 0 \)
 – \(S \) is \(y = x+1 \)
 – \(Q \) is \(y > 0 \)
 – \(Q_1 \) is \(y \geq 0 \)
So…

- For backward reasoning, if we want $\{P\}S\{Q\}$, we could instead:
 - Show $\{P_1\}S\{Q\}$, and
 - Show $P \Rightarrow P_1$

- Better, we could just show $\{P_2\}S\{Q\}$ where P_2 is the **weakest precondition** of Q for S
 - Weakest means the most lenient assumptions such that Q will hold
 - Any precondition P such that $\{P\}S\{Q\}$ is valid will be stronger than P_2, i.e., $P \Rightarrow P_2$

- Amazing (?): Without loops/methods, for any S and Q, there exists a unique weakest precondition, written $wp(S,Q)$
 - Like our general rules with backward reasoning
Weakest preconditions

• \(\text{wp}(x = e; \ Q) \) is \(Q \) with each \(x \) replaced by \(e \)
 – Example: \(\text{wp}(x = y*y; \ x > 4) = y*y > 4 \), i.e., \(|y| > 2 \)

• \(\text{wp}(S1;S2; \ Q) \) is \(\text{wp}(S1, \text{wp}(S2,Q)) \)
 – I.e., let \(R \) be \(\text{wp}(S2,Q) \) and overall \(\text{wp} \) is \(\text{wp}(S1,R) \)
 – Example: \(\text{wp}((y=x+1; \ z=y+1;), \ z > 2) = (x + 1) + 1 > 2 \), i.e., \(x > 0 \)

• \(\text{wp}(\text{if } b \ S1 \ \text{else } S2, \ Q) \) is this logic formula:
 \((b \land \text{wp}(S1,Q)) \lor (!b \land \text{wp}(S2,Q)) \)
 – (In any state, \(b \) will evaluate to either true or false…)
 – (You can sometimes then simplify the result)
Simple examples

- If S is $x = y^2$ and Q is $x > 4$, then $wp(S,Q)$ is $y^2 > 4$, i.e., $|y| > 2$

- If S is $y = x + 1; z = y - 3;$ and Q is $z = 10$, then $wp(S,Q)$...

 $= wp(y = x + 1; z = y - 3; z = 10)$
 $= wp(y = x + 1; wp(z = y - 3; z = 10))$
 $= wp(y = x + 1; wp(z = y - 3; z = 10))$
 $= wp(y = x + 1; y - 3 = 10)$
 $= wp(y = x + 1; y = 13)$
 $= x + 1 = 13$
 $= x = 12$
Bigger example

\[S \text{ is if } (x < 5) \{ \]
\[\quad x = x \times x; \]
\[\} \text{ else } \{ \]
\[\quad x = x + 1; \]
\[\} \]
\[Q \text{ is } x \geq 9 \]

\[\text{wp}(S, x \geq 9) \]
\[= (x < 5 \land \text{wp}(x = x \times x;, x \geq 9)) \]
\[\lor (x \geq 5 \land \text{wp}(x = x + 1;, x \geq 9)) \]
\[= (x < 5 \land x \times x \geq 9) \]
\[\lor (x \geq 5 \land x + 1 \geq 9) \]
\[= (x \leq -3) \lor (x \geq 3 \land x < 5) \]
\[\lor (x \geq 8) \]
If-statements review

Forward reasoning

\{P\}

if B

\{P \land B\}

S1

\{Q1\}

else

\{P \land \neg B\}

S2

\{Q2\}

\{Q1 \lor Q2\}

Backward reasoning

\{ (B \land \text{wp}(S1, \ Q)) \lor (\neg B \land \text{wp}(S2, \ Q)) \}

if B

\{\text{wp}(S1, \ Q)\}

S1

\{Q\}

else

\{\text{wp}(S2, \ Q)\}

S2

\{Q\}

\{Q\}
“Correct”

• If \(\text{wp}(S,Q) \) is \text{true}, then executing \(S \) will always produce a state where \(Q \) holds
 – \text{true} holds for every program state
One more issue

- With forward reasoning, there is a problem with assignment:
 - Changing a variable can affect other assumptions

- Example:
  ```
  {true}
  w = x + y;
  {w = x + y;}
  x = 4;
  {w = x + y ∧ x = 4}
  y = 3;
  {w = x + y ∧ x = 4 ∧ y = 3}
  But clearly we do not know w = 7!
  ```
The fix

• When you assign to a variable, you need to replace all other uses of the variable in the post-condition with a different variable
 – So you refer to the “old contents”

• Corrected example:

 {true}
 w=x+y;
 {w = x + y;}
 x=4;
 {w = x1 + y ∧ x = 4}
 y=3;
 {w = x1 + y1 ∧ x = 4 ∧ y = 3}
Useful example

- Swap contents
 - Give a name to initial contents so we can refer to them in the post-condition
 - Just in the formulas: these “names” are not in the program
 - Use these extra variables to avoid “forgetting” “connections”

```plaintext
\{x = x\_pre \land y = y\_pre\}
\text{tmp} = x;
\{x = x\_pre \land y = y\_pre \land \text{tmp}=x\}
x = y;
\{x = y \land y = y\_pre \land \text{tmp}=x\_pre\}
y = \text{tmp};
\{x = y\_pre \land y = \text{tmp} \land \text{tmp}=x\_pre\}
```