if (justMetYou) {
 crazy = true;
 cout << number << endl;
 int x = rand()%100;
 if (x>=50)
 callMe();
}

"Call Me Maybe"

private function bad() {
 break;
}

"Breaking Bad"

class StarWars(int episode) {
 if (episode == 6)
 return Jedi;
}

"Star Wars: Episode VI – Return of the Jedi"
try
{
 Assert(Life.Real);
 Assert(Life.Fantasy);
}
catch(LandSlideException ex)
{
 #region Reality
 while(true)
 {
 character.Eyes.ForEach(eye => eye.Open().Orient(Direction.Sky).See());
 self.Wealth = null;
 self.Sex = Sex.Male;

 if(self.ComeDifficulty == Difficulty.Easy && self.GoDifficulty == Difficulty.Easy && self.High < 0.1 && self.Low < 0.1)
 {
 self.Sympathies.Clear();

 switch(wind.Direction)
 {
 case Direction.North:
 case Direction.East:
 case Direction.South:
 case Direction.West:
 default:
 piano.Play();
 break;
 }
 }
 }
 #endregion
}
Section 1: Code Reasoning

Alex Mariakakis

cse331-staff@cs.washington.edu (staff-wide)
INTRO + STORY TIME !!!
Reasoning About Code

- Two purposes
 - Prove our code is correct
 - Understand why code is correct
- Forward reasoning: determine what follows from initial conditions
- Backward reasoning: determine sufficient conditions to obtain a certain result
Forward Reasoning

\{x \geq 0, y \geq 0\}

y = 16;

\{x \geq 0, y = 16\}

x = x + y

\{x \geq 16, y = 16\}

x = \text{sqrt}(x)

\{x \geq 4, y = 16\}

y = y - x

\{x \geq 4, y \leq 12\}
Forward Reasoning

\{true\}

if \((x > 0) \) {
 \{x > 0\}
 abs = x
 \{x > 0, abs = x\}
}
else {
 \{x <= 0\}
 abs = -x
 \{x <= 0, abs = -x\}
}
\{x > 0, abs = x OR x <= 0, abs = -x\}
\{abs = |x|\}
Backward Reasoning

\{x + 3b - 4 > 0\}

a = x + b;

\{a + 2b - 4 > 0\}

c = 2b - 4

\{a + c > 0\}

x = a + c

\{x > 0\}
Backward Reasoning

\{y > 15 \mid \mid (y \leq 5 \land \land y + z > 17)\}\n
if (y > 5) {
 \{y > 15\}
 x = y + 2
 \{x > 17\}
}
else {
 \{y + z > 17\}
 x = y + z;
 \{x > 17\}
}
\{x > 17\}
Implication

- Hoare triples are just an extension of logical implication
 - Hoare triple: \{P\} S \{Q\}
 - P → Q after statement S
- Everything implies true
- False implies everything

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P → Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Weaker vs. Stronger

• If $P_1 \rightarrow P_2$, then
 o P_1 is stronger than P_2
 o P_2 is weaker than P_1

• Weaker statements are more general
• Stronger statements are more restrictive
Weaker vs. Stronger

\[
y \geq 16 \quad y = 16
\]

\[
x \text{ is even, } y = x + 1 \quad x \text{ is even, } y \text{ is odd}
\]

“Alex is an awesome TA” “Alex is a TA”
Weakest Precondition

• The most lenient assumptions such that a postcondition will be satisfied
• If P^* is the weakest precondition for $\{P\} S \{Q\}$, then $P \rightarrow P^*$ for all P that make the Hoare triple valid
• Notation: $WP = \text{wp}(S, Q)$
Weakest Precondition

\[\text{wp}(x = y \cdot y, x > 4) \]
\[|y| > 2 \]

\[\text{wp}(y = x+1; z = y-3, z = 10) \]
\[\text{wp}(y = x+1, \text{wp}(z = y-3, z = 10)) \]
\[\text{wp}(y = x+1, y-3 = 10) \]
\[\text{wp}(y = x+1, y = 13) \]
\[x = 12 \]