CSE 331
Software Design & Implementation

Hal Perkins
Spring 2014
Lecture 2 – Reasoning About Code With Logic
Reasoning about code

Determine what facts are true as a program executes
 – Under what assumptions

Examples:
 – If \(x \) starts positive, then \(y \) is 0 when the loop finishes
 – Contents of the array \(arr \) refers to are sorted
 – Except at one code point, \(x + y = z \)
 – For all instances of \(\text{Node} \ n \),
 \[n . \text{next} == \text{null} \lor n . \text{next}_\text{prev} == n \]
 – ...

CSE 331 Spring 2014
Why do this?

• Essential complement to testing, which we will also study
 – Testing: Actual results for some actual inputs
 – Logical reasoning: Reason about whole classes of inputs/states at once (“If $x > 0$, …”)
 • Prove a program correct (or find bugs trying)
 • Understand why code is correct

• Stating assumptions is the essence of specification
 – “Callers must not pass `null` as an argument”
 – “Callee will always return an unaliased object”
 – …
Our approach

• Hoare Logic: a 1970s approach to logical reasoning about code
 – For now, consider just variables, assignments, if-statements, while-loops
 • So no objects or methods

• This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

• Next lecture: Loops
Why?

• Programmers rarely “use Hoare logic” like in this lecture
 – For simple snippets of code, it’s overkill
 – Gets very complicated with objects and aliasing
 – But is occasionally useful for loops with subtle invariants
 • Examples: Homework 0, Homework 2

• Also it’s an ideal setting for the right logical foundations
 – How can logic “talk about” program states?
 – How does code execution “change what is true”?
 – What do “weaker” and “stronger” mean?

This is all essential for specifying library-interfaces, which does happen All the Time in The Real World (coming lectures)
Example

Forward reasoning:

- Suppose we initially know (or assume) \(w > 0 \)

  ```
  // w > 0
  x = 17;
  // w > 0 \land x == 17
  y = 42;
  // w > 0 \land x == 17 \land y == 42
  z = w + x + y;
  // w > 0 \land x == 17 \land y == 42 \land z > 59
  ...
  ```

- Then we know various things after, including \(z > 59 \)
Example

Backward reasoning:

- Suppose we want z to be negative at the end

  ```
  // w + 17 + 42 < 0
  x = 17;
  // w + x + 42 < 0
  y = 42;
  // w + x + y < 0
  z = w + x + y;
  // z < 0
  ```

- Then we know initially we need to know/assume $w < -59$
 - Necessary and sufficient
Forward vs. Backward, Part 1

• Forward reasoning:
 – Determine what follows from initial assumptions
 – Most useful for maintaining an invariant

• Backward reasoning
 – Determine sufficient conditions for a certain result
 • If result desired, the assumptions suffice for correctness
 • If result undesired, the assumptions suffice to trigger bug
Forward vs. Backward, Part 2

• Forward reasoning:
 – Simulates the code (for many “inputs” “at once”)
 – Often more intuitive
 – But introduces [many] facts irrelevant to a goal

• Backward reasoning
 – Often more useful: Understand what each part of the code contributes toward the goal
 – “Thinking backwards” takes practice but gives you a powerful new way to reason about programs
// initial assumptions
if(...) {
 ... // also know test evaluated to true
} else {
 ... // also know test evaluated to false
}
// either branch could have executed

Two key ideas:

1. The precondition for each branch includes information about the result of the test-expression

2. The overall postcondition is the disjunction (“or”) of the postcondition of the branches
Example (Forward)

Assume initially $x \geq 0$

```
// x >= 0
z = 0;
// x >= 0 ∧ z == 0
if (x != 0) {
    // x >= 0 ∧ z == 0 ∧ x != 0 (so x > 0)
    z = x;
    // ... ∧ z > 0
} else {
    // x >= 0 ∧ z == 0 ∧ !(x!=0) (so x == 0)
    z = x + 1;
    // ... ∧ z == 1
}
// ( ... ∧ z > 0) ∨ (... ∧ z == 1) (so z > 0)
```
Our approach

• Hoare Logic, a 1970s approach to logical reasoning about code
 – [Named after its inventor, Tony Hoare]
 – Considering just variables, assignments, if-statements, while-loops
 • So no objects or methods

• This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

• Next lecture: Loops
Some notation and terminology

- The “assumption” before some code is the **precondition**
- The “what holds after (given assumption)” is the **postcondition**

- Instead of writing pre/postconditions after `//`, write them in `{…}`
 - This is not Java
 - How Hoare logic has been written “on paper” for 40ish years

    ```
    \{ w < -59 \} \\
    x = 17; \\
    \{ w + x < -42 \}
    ```

 - In pre/postconditions, `=` is equality, not assignment
 - Math’s “=”, which for numbers is Java’s `==`

      ```
      \{ w > 0 \land x = 17 \} \\
      y = 42; \\
      \{ w > 0 \land x = 17 \land y = 42 \}
      ```
What an assertion means

• An assertion (pre/postcondition) is a logical formula that can refer to program state (e.g., contents of variables)

• A program state is something that “given” a variable can “tell you” its contents
 – Or any expression that has no side-effects

• An assertion holds for a program state, if evaluating using the program state produces true
 – Evaluating a program variable produces its contents in the state
 – Can think of an assertion as representing the set of (exactly the) states for which it holds
A Hoare Triple

• A Hoare triple is two assertions and one piece of code:

\[\{ P \} \quad S \quad \{ Q \} \]

– \(P \) the precondition
– \(S \) the code (statement)
– \(Q \) the postcondition

• A Hoare triple \(\{ P \} \quad S \quad \{ Q \} \) is (by definition) **valid** if:
 – For all states for which \(P \) holds, executing \(S \) always produces a state for which \(Q \) holds
 – Less formally: If \(P \) is true before \(S \), then \(Q \) must be true after
 – Else the Hoare triple is **invalid**
Examples

Valid or invalid?
- (Assume all variables are integers without overflow)

- {$x \neq 0}$ $y = x \times x$; {$y > 0$}
- {$z \neq 1}$ $y = z \times z$; {$y \neq z$}
- {$x \geq 0$} $y = 2 \times x$; {$y > x$}
- {true} (if($x > 7$) {y=4;} else {y=3;}) {$y < 5$}
- {true} ($x = y$; $z = x$;) {$y=z$}
- {$x=7 \land y=5$}
 (tmp=x; $x=tmp$; $y=x$;)
 {$y=7 \land x=5$}
Examples

Valid or invalid?

- (Assume all variables are integers without overflow)

• \{x \neq 0\} \ y = x\times x; \ {y > 0} \quad \text{valid}
• \{z \neq 1\} \ y = z\times z; \ {y \neq z} \quad \text{invalid}
• \{x \geq 0\} \ y = 2\times x; \ {y > x} \quad \text{invalid}
• \{\text{true}\} (\text{if}(x > 7) \{y=4;\} \text{ else } \{y=3;\}) \ {y < 5} \quad \text{valid}
• \{\text{true}\} (x = y; \ z = x;) \ {y=z} \quad \text{valid}
• \{x=7 \land y=5\} \quad \text{invalid}
 (\text{tmp}=x; \ x=\text{tmp}; \ y=x;)
 \{y=7 \land x=5\}
Aside: assert in Java

- An assertion in Java is a statement with a Java expression, e.g.,
  ```java
  assert x > 0 && y < x;
  ```
- Similar to our assertions
 - Evaluate using a program state to get `true` or `false`
 - Uses Java syntax

- In Java, this is a **run-time thing**: Run the code and raise an exception if assertion is violated
 - Unless assertion-checking is disabled
 - Later course topic

- This week: we are reasoning about the code, not running it on some input
The general rules

• So far: Decided if a Hoare triple was valid by using our understanding of programming constructs

• Now: For each kind of construct there is a general rule
 – A rule for assignment statements
 – A rule for two statements in sequence
 – A rule for conditionals
 – [next lecture:] A rule for loops
 – …
Assignment statements

\{P\} x = e; \{Q\}

- Let Q’ be like Q except replace every x with e
- Triple is valid if:
 - For all program states, if P holds, then Q’ holds
 - That is, P implies Q’, written P => Q’

- Example: \{z > 34\} y=z+1; \{y > 1\}
 - Q’ is \{z+1 > 1\}
Sequences

\{P\} S1;S2 \{Q\}

- Triple is valid if and only if there is an assertion R such that
 - $\{P\}S1\{R\}$ is valid, and
 - $\{R\}S2\{Q\}$ is valid

- Example: $\{z \geq 1\} \ y=z+1; \ w=y*y; \ \{w > y\}$ (integers)
 - Let R be $\{y > 1\}$
 - Show $\{z \geq 1\} \ y=z+1; \ \{y > 1\}$
 - Use rule for assignments: $z \geq 1$ implies $z+1 > 1$
 - Show $\{y > 1\} \ w=y*y; \ \{w > y\}$
 - Use rule for assignments: $y > 1$ implies $y*y > y$
Conditionals

{P} if(b) S1 else S2 {Q}

• Triple is valid if and only if there are assertions Q1, Q2 such that
 – {P ∧ b} S1 {Q1} is valid, and
 – {P ∧ !b} S2 {Q2} is valid, and
 – Q1 ∨ Q2 implies Q

• Example: {true} (if(x > 7) y=x; else y=20;) {y > 5}
 – Let Q1 be {y > 7} (other choices work too)
 – Let Q2 be {y = 20} (other choices work too)
 – Use assignment rule to show {true ∧ x > 7} y=x; {y>7}
 – Use assignment rule to show {true ∧ x <= 7} y=20; {y=20}
 – Indicate y>7 ∨ y=20 implies y>5
Our approach

- Hoare Logic, a 1970s approach to logical reasoning about code
 - Considering just variables, assignments, if-statements, while-loops
 - So no objects or methods

- This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

- Next lecture: Loops
Weaker vs. Stronger

If P1 implies P2 (written P1 => P2), then:
- P1 is **stronger** than P2
- P2 is **weaker** than P1

- Whenever P1 holds, P2 also holds
- So it is more (or at least as) “difficult” to satisfy P1
 - The program states where P1 holds are a subset of the program states where P2 holds
- So P1 puts more constraints on program states
- So it’s a stronger set of obligations/requirements
Examples

- $x = 17$ is stronger than $x > 0$

- x is prime is neither stronger nor weaker than x is odd

- x is prime and $x > 2$ is stronger than x is odd and $x > 2$

- ...

Why this matters to us

• Suppose:
 – $\{P\}S\{Q\}$, and
 – P is weaker than some P_1, and
 – Q is stronger than some Q_1

• Then: $\{P_1\}S\{Q\}$ and $\{P\}S\{Q_1\}$ and $\{P_1\}S\{Q_1\}$

• Example:
 – P is $x \geq 0$
 – P_1 is $x > 0$
 – S is $y = x+1$
 – Q is $y > 0$
 – Q_1 is $y \geq 0$
So…

• For backward reasoning, if we want \(\{P\} S \{Q\} \), we could instead:
 – Show \(\{P_1\} S \{Q\} \), and
 – Show \(P \Rightarrow P_1 \)

• Better, we could just show \(\{P_2\} S \{Q\} \) where \(P_2 \) is the weakest precondition of \(Q \) for \(S \)
 – Weakest means the most lenient assumptions such that \(Q \) will hold
 – Any precondition \(P \) such that \(\{P\} S \{Q\} \) is valid will be stronger than \(P_2 \), i.e., \(P \Rightarrow P_2 \)

• Amazing (?)\: Without loops/methods, for any \(S \) and \(Q \), there exists a unique weakest precondition, written \(\text{wp}(S,Q) \)
 – Like our general rules with backward reasoning
Weakest preconditions

• \(\text{wp}(x = e; \ Q) \) is \(Q \) with each \(x \) replaced by \(e \)
 – Example: \(\text{wp}(x = y*y; \ x > 4) = y*y > 4 \), i.e., \(|y| > 2 \)

• \(\text{wp}(S1;S2, \ Q) \) is \(\text{wp}(S1,\text{wp}(S2,Q)) \)
 – I.e., let \(R \) be \(\text{wp}(S2,Q) \) and overall \(\text{wp} \) is \(\text{wp}(S1,R) \)
 – Example: \(\text{wp}((y=x+1; \ z=y+1;), \ z > 2) = (x + 1) + 1 > 2 \), i.e., \(x > 0 \)

• \(\text{wp}(\text{if } b \ S1 \ \text{else } S2, \ Q) \) is this logic formula:
 \((b \land \text{wp}(S1,Q)) \lor (\neg b \land \text{wp}(S2,Q)) \)
 – (In any state, \(b \) will evaluate to either true or false…)
 – (You can sometimes then simplify the result)
Simple examples

• If S is $x = y \cdot y$ and Q is $x > 4$, then $wp(S, Q)$ is $y \cdot y > 4$, i.e., $|y| > 2$

• If S is $y = x + 1; z = y - 3$; and Q is $z = 10$, then $wp(S, Q)$...

 $= wp(y = x + 1; z = y - 3; z = 10)$
 $= wp(y = x + 1; wp(z = y - 3; z = 10))$
 $= wp(y = x + 1; wp(z = y - 3; z = 10))$
 $= wp(y = x + 1; y - 3 = 10)$
 $= wp(y = x + 1; y = 13)$
 $= x + 1 = 13$
 $= x = 12$
Bigger example

\[
S \text{ is if } (x < 5) \{ \\
 x = x \times x; \\
\} \text{ else } \{ \\
 x = x + 1; \\
\}
\]

Q is \(x \geq 9 \)

\[
wp(S, x \geq 9) \\
= (x < 5 \land wp(x = x \times x;, x \geq 9)) \\
 \lor (x \geq 5 \land wp(x = x + 1;, x \geq 9))
\]

\[
= (x < 5 \land x \times x \geq 9) \\
 \lor (x \geq 5 \land x + 1 \geq 9)
\]

\[
= (x \leq -3) \lor (x \geq 3 \land x < 5) \\
 \lor (x \geq 8)
\]
If-statements review

Forward reasoning

\{P\}
if B
 \{P \land B\}
 S1
 \{Q1\}
else
 \{P \land \neg B\}
 S2
 \{Q2\}
\{Q1 \lor Q2\}

Backward reasoning

\{(B \land \text{wp}(S1, Q)) \lor (\neg B \land \text{wp}(S2, Q))\}
if B
 \{\text{wp}(S1, Q)\}
 S1
 \{Q\}
else
 \{\text{wp}(S2, Q)\}
 S2
 \{Q\}
\{Q\}
“Correct”

- If $\text{wp}(S, Q)$ is true, then executing S will always produce a state where Q holds
 - true holds for every program state
One more issue

• With forward reasoning, there is a problem with assignment:
 – Changing a variable can affect other assumptions

• Example:

```
{true}
w = x + y;
{w = x + y;}
x = 4;
{w = x + y \land x = 4}
y = 3;
{w = x + y \land x = 4 \land y = 3}
```

But clearly we do not know \(w = 7 \)!
The fix

- When you assign to a variable, you need to replace all other uses of the variable in the post-condition with a different variable
 - So you refer to the “old contents”

- Corrected example:
 {
 true
 w=x+y;
 {w = x + y;}
 x=4;
 {w = x1 + y ∧ x = 4}
 y=3;
 {w = x1 + y1 ∧ x = 4 ∧ y = 3}
 }
Useful example

- Swap contents
 - Give a name to initial contents so we can refer to them in the post-condition
 - Just in the formulas: these “names” are not in the program
 - Use these extra variables to avoid “forgetting” “connections”

\[
\{x = x_{\text{pre}} \land y = y_{\text{pre}}\} \\
tmp = x; \\
\{x = x_{\text{pre}} \land y = y_{\text{pre}} \land \ tmp=x\} \\
x = y; \\
\{x = y \land y = y_{\text{pre}} \land \ tmp=x_{\text{pre}}\} \\
y = \text{tmp}; \\
\{x = y_{\text{pre}} \land y = \text{tmp} \land \ tmp=x_{\text{pre}}\}