

Slides adapted from Alex Mariakakis, with material
from David Mailhot, Hal Perkins, Mike Ernst

Section 9:
Design Patterns

Agenda

• What are design patterns?

• Creational patterns review

• Structural patterns preview

What Is A Design Pattern

• A standard solution to a common programming problem

• A technique for making code more flexible

• Shorthand for describing program design and how

program components are connected

Creational Patterns

• Problem: Constructors in Java are not flexible
• Always return a fresh new object, never reuse one

• Can’t return a subtype of the class they belong to

• Solution: Creational patterns!
• Sharing

• Singleton

• Interning

• Flyweight

• Factories

• Factory method

• Factory object

• Builder (new!)

Creational Patterns: Sharing

• The old way: Java constructors always return a new

object

• Singleton: only one object exists at runtime
• Factory method returns the same object every time

• Interning: only one object with a particular (abstract)

value exists at runtime
• Factory method returns an existing object, not a new one

• Flyweight: separate intrinsic and extrinsic state,

represents them separately, and interns the intrinsic state
• Implicit representation uses no space

• Not as common/important

Creational Patterns: Singleton

• For a class where only one object of that class can ever

exist

• Two possible implementations
• Eager instantiation: creates the instance when the class is loaded to

guarantee availability

• Lazy instantiation: only creates the instance once it’s needed to avoid

unnecessary creation

Creational Patterns: Singleton

• Eager instantiation

public class Bank {

 private static Bank INSTANCE = new Bank();

 // private constructor

 private Bank() { … }

 // factory method

 public static Bank getInstance() {

 return INSTANCE;

 }

}

Bank b = new Bank();

Bank b = Bank.getInstance();

Creational Patterns: Singleton

• Lazy instantiation

public class Bank {

 private static Bank INSTANCE;

 // private constructor

 private Bank() { … }

 // factory method

 public static Bank getInstance() {

 if (INSTANCE == null) {

 INSTANCE = new Bank();

 }

 return INSTANCE;

 }

}

Bank b = new Bank();

Bank b = Bank.getInstance();

Creational Patterns: Singleton

• Would you prefer eager or lazy instantiation for an

HTTPRequest class?

• handles authentication

• definitely needed for any HTTP transaction

• Would you prefer eager or lazy instantiation for a

Comparator class?

• compares objects

• may or may not be used at runtime

Creational Patterns: Interning

• Similar to Singleton, except instead of just having one

object per class, there’s one object per abstract value of

the class

• Saves memory by compacting multiple copies

• Requires the class being interned to be immutable. Why?

Creational Patterns: Interning

public class Point {

 private int x, y;

 public Point(int x, int y) {

 this.x = x;

 this.y = y;

 }

 public int getX() { return x; }

 public int getY() { return y; }

 @Override

 public String toString() {

 return “(” + x + “,” + y + “)”;

 }

}

Creational Patterns: Interning

public class Point {

 private static Map<String, Point> instances =

 new WeakHashMap<String, Point>();

 public static Point getInstance(int x, int y) {

 String key = x + “,”, + y;

 if (!instances.containsKey(key))

 instances.put(key, new Point(x,y));

 return instances.get(key);

 }

 private final int x, y; // immutable

 private Point(int x, int y) {…}

}

If our point was represented with r and theta, we’d need to constrain them for use in

the key. Otherwise, we’d have “5, pi” and “5, 3pi” as different entries in our map even

though they are the same abstract value.

Creational Patterns: Factories

public class City {

 public Stereotype getStereotypicalPerson() {…}

}

City seattle = new City();

seattle.getSterotypicalPerson();

// we want a SeattleStereotype

Creational Patterns: Factories

• Factories solve the problem that Java constructors cannot
return a subtype of the class they belong to

• Two options:
• Factory method

• Helper method creates and returns objects

• Method defines the interface for creating an object, but defers
instantiation to subclasses

• Factory object

• Abstract superclass defines what can be customized

• Concrete subclass does the customization, returns appropriate
subclass

• Object provides the interface for creating families of
related/dependent objects without specifying their concrete
classes

Creational Patterns: Factory Method

public class City {

 public Stereotype getStereotypicalPerson() {…}

}

public class Seattle extends City {

 @Override

 public Stereotype getStereotypicalPerson() {

 return new SeattleStereotype();

 }

}

City seattle = new Seattle();

seattle.getSterotypicalPerson();

Creational Patterns: Factory Object

interface StereotypeFactory {

 Stereotype getStereotype();

}

class SeattleStereotypeFactory implements StereotypeFactory {

 public Stereotype getStereotype() {

 return new SeattleStereotype();

 }

}

public class City {

 public City(StereotypeFactory f) {…}

 public Stereotype getStereotypicalPerson() {

 f.getStereotype();

 }

}

City seattle = new City(new SeattleStereotypeFactory());

seattle.getSterotypicalPerson();

Creational Patterns: Builder

• The class has an inner class Builder and is created

using the Builder instead of the constructor

• The Builder takes optional parameters via setter

methods (e.g., setX(), setY(), etc.)

• When the client is done supplying parameters, she calls
build() on the Builder, finalizing the builder and

returning an instance of the object desired

Creational Patterns: Builder
public class NutritionFacts {

 // required

 private final int servingSize, servings;

 // optional

 private final int calories, fat, sodium;

 public NutritionFacts(int servingSize, int servings) {

 this(servingSize, servings, 0);

 }

 public NutritionFacts(int servingSize, int servings, int calories) {

 this(servingSize, servings, calories, 0);

 }

 public NutritionFacts(int servingSize, int servings, int calories, int fat) {

 this(servingSize, servings, calories, fat, 0);

 }

 …

 public NutritionFacts(int servingSize, int servings, int calories, int fat,

 int sodium) {

 this.servingSize = servingSize;

 this.servings = servings;

 this.calories = calories;

 this.fat = fat;

 this.sodium = sodium;

 }

}

Creational Patterns: Builder
public class NutritionFacts {

 private final int servingSize, servings, calories, fat, sodium;

 public static class Builder {

 // required

 private final int servingSize, servings;

 // optional, initialized to default values

 private final int calories = 0;

 private final int fat = 0;

 private final int sodium = 0;

 public Builder(int servingSize, int servings) {

 this.servingSize = servingSize;

 this.servings = servings;

 }

 public Builder calories(int val) { calories = val; return this; }

 public Builder fat(int val) { fat = val; return this; }

 public Builder sodium(int val) { sodium = val; return this; }

 public NutritionFacts build() { return new NutritionFacts(this); }

 }

 public NutritionFacts(Builder builder) {

 this.servingSize = builder.servingSize;

 this.servings = builder.servings;

 this.calories = builder.calories;

 this.fat = builder.fat;

 this.sodium = builder.sodium;

 }

}

Creational Patterns: Builder

• Useful when you have many constructor parameters
• It is hard to remember which order they should all go in

• Easily allows for optional parameters
• If you have n optional parameters, you need 2^n constructors, but only one

builder

Structural Patterns

• Problem: Sometimes difficult to realize relationships

between entities
• Important for code readability

• Solution: Structural patterns!
• We’re just going to talk about wrappers, which translate between

incompatible interfaces

Pattern Functionality Interface Purpose

Adapter same different modify the interface

Decorator different same extend behavior

Proxy same same restrict access

Structural Patterns: Adapter

• Changes an interface without changing functionality
• Rename a method

• Convert units

• Why?
• We already have a class that does most/all what we want

• It just doesn’t do it in the form we want

Structural Patterns: Adapter

• MSR has a library and API for image composition

• public void photoComposite(List<Image>

photoStack, List<Weight> objectives, Image

output);

• MS PhotoGallery wants to use this API to make new

features

• PhotoGalleryDisplay object contains a DisplayImage that

is a 2d array of pixels representing the main image in view

• Both codebases are very large and changes will affect a

lot of other pieces

Structural Patterns: Adapter

public class PhotoSynthAdapter {

 public DisplayImage

makePanoramic(List<Image> photos)

 {

 Image output = new Image();

 List<Weight> objectives =

generatePanoWeights();

 photoComposite(photos, objectives,

output);

 return ImageToDisplayImage(output);

 }

 public DisplayImage removeTourists(…)

 …

}

Structural Patterns: Adapter

• Other examples:
• Angles passed in using radians vs. degrees

• Bytes vs. strings

• Hex vs. decimal numbers

Structural Patterns: Decorator

• Adds functionality without changing

 the interface
• Add caching

• Adds to existing methods to do

 something additional while still

 preserving the previous spec
• Add logging

• Decorators can remove functionality

 without changing the interface
• UnmodifiableList with add() and put()

public abstract class Cake{

 public abstract double getWeight();

 public abstract String getDescription();

}

public class PlainCake extends Cake{

 public double getWeight()

 {

 return 8.0;

 }

 public String getDescription()

 {

 return “sponge cake”;

 }

}
from http://en.wikipedia.org/wiki/Decorator_pattern

http://en.wikipedia.org/wiki/Decorator_pattern
http://en.wikipedia.org/wiki/Decorator_pattern

public abstract class CakeDecorator extends Cake

{

 protected final Cake decoratedCake;

 protected String separator = ", ";

 public CakeDecorator (Cake decoratedCake)

 {

 this.decoratedCake = decoratedCake;

 }

 public double getWeight()

 {

 return decoratedCake.getWeight();

 }

 public String getDescription()

 {

 return decoratedCake.getDescription();

 }

}
from http://en.wikipedia.org/wiki/Decorator_pattern

http://en.wikipedia.org/wiki/Decorator_pattern
http://en.wikipedia.org/wiki/Decorator_pattern

class Frosting extends CakeDecorator

{

 public Frosting (Cake decoratedCake)

 {

 public double getWeight()

 {

 return super.getWeight() + 4.0;

 }

 public String getDescription()

 {

 return super.getDescription +

separator + “vanilla frosting”;

 }

 }

}

from http://en.wikipedia.org/wiki/Decorator_pattern

http://en.wikipedia.org/wiki/Decorator_pattern
http://en.wikipedia.org/wiki/Decorator_pattern

public static void main(String[] args)

{

 Cake c = new PlainCake();

 System.out.println(“Weight: " +

c.getWeight() + "; Contains: " +

c.getDescription());

 c = new Frosting(c);

 System.out.println(“Weight: " +

c.getWeight() + "; Contains: " +

c.getDescription());

…

 c = new Roses(c);

…

}

Weight: 8.0

Contains: sponge cake

Weight: 12.0

Contains: sponge cake, vanilla frosting

Weight: 15.5

Contains: sponge cake, vanilla frosting,

buttercream roses

from http://en.wikipedia.org/wiki/Decorator_pattern

http://en.wikipedia.org/wiki/Decorator_pattern
http://en.wikipedia.org/wiki/Decorator_pattern

Structural Patterns: Proxy

• Wraps the class while maintaining the same interface and

same functionality

• Integer vs. int, Boolean vs. boolean

• Controls access to other objects
• Communication: manage network details when using a remote object

• Security: permit access only if proper credentials

• Creation: object might not yet exist because creation is expensive

