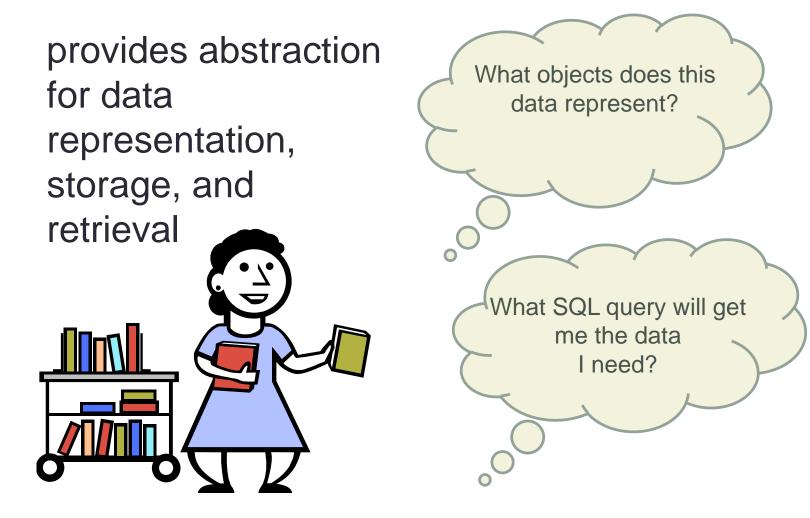
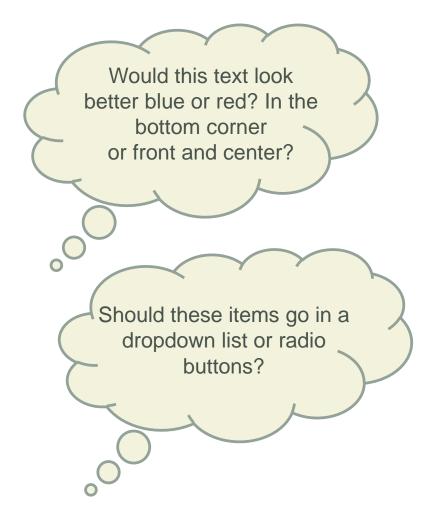
Section 8: Model-View-Controller

Slides adapted from Alex Mariakakis, with material from Krysta Yousoufian and Kellen Donohue


Agenda

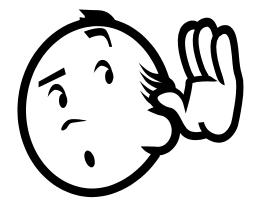
- MVC
- MVC example 1: traffic light
- MVC example 2: registration
- HW8 info

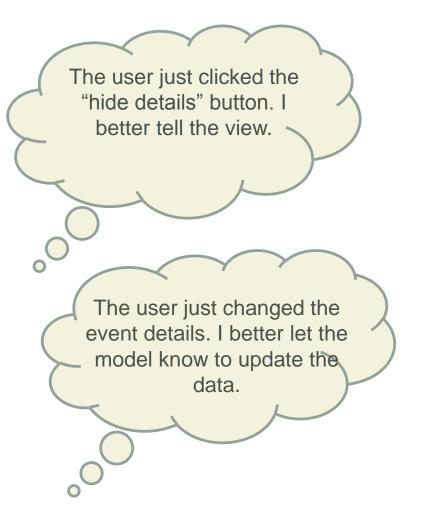
MVC


- The classic design pattern
- Used for data-driven user applications
- Such apps juggle several tasks:
 - Loading and storing the data getting it in/out of storage on request
 - Constructing the user interface what the user sees
 - Interpreting user actions deciding whether to modify the UI or data
- These tasks are largely independent of each other
- Model, view, and controller each get one task

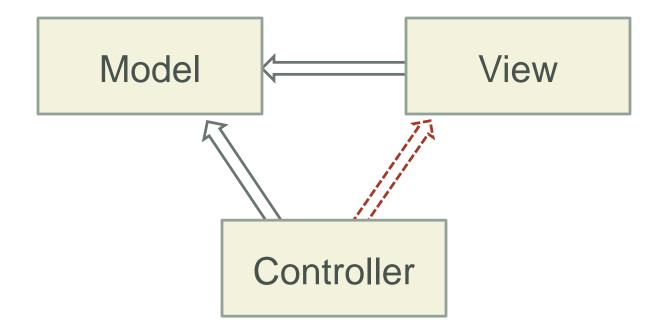
Model

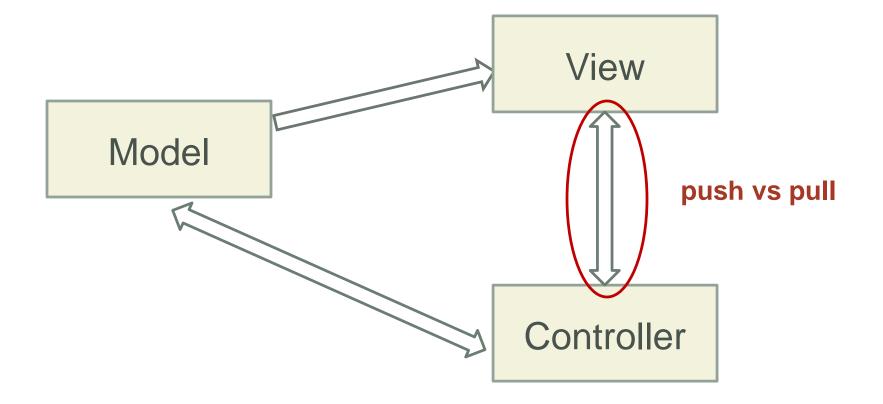
View


asks model for data and presents it in a user-friendly format



Controller


listens for the user to change data or state in the UI, notifying the model or view accordingly

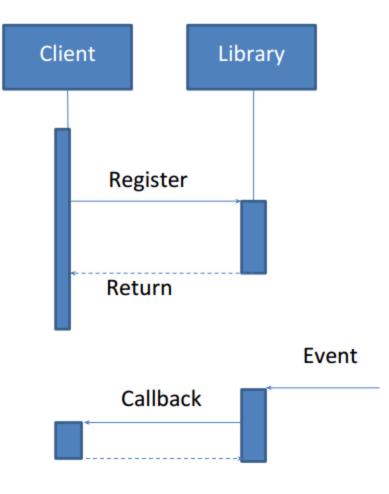

Structural Relationship

taken from http://msdn.microsoft.com/en-us/library/ff649643.aspx

What do you think are the benefits of MVC?

Communication Flow

Push vs. Pull Architecture


- Push architecture
 - As soon as the model changes, it notifies all of the views
- Pull architecture
 - When a view needs to be updated, it asks the model for new data
- Advantages for push
 - Guaranteed to have latest data in case something goes wrong later on
- Advantages for pull
 - Avoid unnecessary updates, not nearly as intensive on the view

Callbacks

- Synchronous callbacks:
 - Examples: HashMap calls its client's hashCode, equals
 - Useful when the callback result is needed immediately by the library
- Asynchronous callbacks:
 - Examples: GUI listeners
 - Register to indicate interest and where to call back
 - Useful when the callback should be performed later, when some interesting event occurs

Async Callbacks

- Asynchronous callbacks:
 - Examples: GUI listeners
 - Register to indicate interest and where to call back
 - Useful when the callback should be performed later, when some interesting event occurs

return, so client can finish processing

MVC in Webapps

- Ruby on Rails and Django enforce MVC
- In Ruby on Rails:
 - Model: Ruby class defining an object, database backend
 - Controller: Ruby code handling events and callbacks
 - View: html page displays
 - Which does Javascript belong to?
- Languages enforcing MVC doesn't necessarily guarantee good design; you still have to make good choices

Benefits of MVC

- Organization of code
 - Maintainable, easy to find what you need
- Ease of development
 - Build and test components independently
- Flexibility
 - Swap out views for different presentations of the same data (ex: calendar daily, weekly, or monthly view)
 - Swap out models to change data storage without affecting user

MVC Example – Traffic Signal

- Regulate valid traffic movements
 - · Don't let cars run into each other
- Detect cars waiting to enter intersection
- Traffic lights to direct car traffic
- Manual override for particular lights
 - Automatic green for fire trucks
- Detect pedestrians waiting to cross
- Pedestrian signals to direct pedestrians
- External timer which triggers changes at set interval

Component	Model	View	Controller
Regulate valid traffic movements			
Detect cars waiting to enter intersection			
Traffic lights to direct car traffic			
Manual override for particular lights			
Detect pedestrians waiting to cross			
Pedestrian signals to direct pedestrians			
External timer which triggers changes at set interval			

Component	Model	View	Controller
Regulate valid traffic movements	X		
Detect cars waiting to enter intersection			
Traffic lights to direct car traffic			
Manual override for particular lights			
Detect pedestrians waiting to cross			
Pedestrian signals to direct pedestrians			
External timer which triggers changes at set interval			

Component	Model	View	Controller
Regulate valid traffic movements	X		
Detect cars waiting to enter intersection			X
Traffic lights to direct car traffic			
Manual override for particular lights			
Detect pedestrians waiting to cross			
Pedestrian signals to direct pedestrians			
External timer which triggers changes at set interval			

Component	Model	View	Controller
Regulate valid traffic movements	X		
Detect cars waiting to enter intersection			X
Traffic lights to direct car traffic		X	
Manual override for particular lights			
Detect pedestrians waiting to cross			
Pedestrian signals to direct pedestrians			
External timer which triggers changes at set interval			

Component	Model	View	Controller
Regulate valid traffic movements	X		
Detect cars waiting to enter intersection			X
Traffic lights to direct car traffic		X	
Manual override for particular lights			X
Detect pedestrians waiting to cross			
Pedestrian signals to direct pedestrians			
External timer which triggers changes at set interval			

Component	Model	View	Controller
Regulate valid traffic movements	X		
Detect cars waiting to enter intersection			X
Traffic lights to direct car traffic		X	
Manual override for particular lights			X
Detect pedestrians waiting to cross			X
Pedestrian signals to direct pedestrians			
External timer which triggers changes at set interval			

Component	Model	View	Controller
Regulate valid traffic movements	X		
Detect cars waiting to enter intersection			X
Traffic lights to direct car traffic		X	
Manual override for particular lights			X
Detect pedestrians waiting to cross			X
Pedestrian signals to direct pedestrians		X	
External timer which triggers changes at set interval			

Component	Model	View	Controller
Regulate valid traffic movements	X		
Detect cars waiting to enter intersection			X
Traffic lights to direct car traffic		X	
Manual override for particular lights			X
Detect pedestrians waiting to cross			X
Pedestrian signals to direct pedestrians		X	
External timer which triggers changes at set interval			X

Traffic Signal – Model

- Stores current state of traffic flow
 - Knows current direction of traffic
 - Capable of skipping a light cycle
- Stores whether there are cars and/or pedestrians waiting
- Example
 - TrafficModel

Traffic Signal – Views


- Conveys information to cars and pedestrians in a specific direction
- Examples
 - CarLight traffic light
 - PedestrianLight pedestrian light

Traffic Signal – Controller

- Aware of model's current direction
- Triggers methods to notify model that state should change
- Examples
 - PedestrianButton notifies TrafficModel that there is a pedestrian waiting
 - CarDetector notifies TrafficModel that there is a car waiting
 - LightSwitch enables or disables the light
 - Timer regulates time in some way, possibly to skip cycles

MVC Example – Registration

- Registration system with web interface
- Advisors create classes, set space, time, restrictions
- Professors can see who's signed up for their class
- Students can see available classes and sign up for classes
- Administrators can place holds on student registration
- Professors can be notified when a student drops
- Students can be notified when a spot is available in a class they want

Registration

- Would you use push or pull?
- What would change for interaction with an API or mobile app?
- If advisors can see what students are registered for and change their registration, what changes?

HW8 Overview

- Apply your generic graph & Dijkstra's to campus map data
- Given a list of buildings and walking paths
- Produce routes from one building to another on the walking paths
 - Distance in feet, compass directions
- Command-line interface now
 - GUI in HW9

HW8 Data Format

List of buildings (abbreviation, name, loc in pixels)

BAG Bagley Hall (East Entrance) 1914.5103,1708.8816 BGR By George 1671.5499,1258.4333

• List of paths (endpoint 1, endpoint 2, dist in feet)

1903.7201,1952.4322

1906.1864,1939.0633: 26.583482327919597

1897.9472,1960.0194: 20.597253035175832

1915.7143,1956.5: 26.68364745009741

2337.0143,806.8278

2346.3446,817.55768: 29.685363221542797

2321.6193,788.16714: 49.5110360968527

2316.4876,813.59229: 44.65826043418031

• (0,0) is in the upper left

MVC in HW8

- Model stores graph, performs Dijkstra's
- View shows results to users in text format
- Controller takes user commands and uses view to show results
- View and Controller will change in HW9, but Model will stay the same