

Slides adapted from Alex Mariakakis,
with material Kellen Donohue, David Mailhot, and Dan Grossman

Section 7:
Dijkstra’s & Midterm

Postmortem

Agenda
• How to weight your edges
• Dijkstra’s algorithm
• Midterm Q&A

Homework 7
• Modify your graph to use generics

• Will have to update HW #5 and HW #6 tests
• Implement Dijkstra’s algorithm

• Search algorithm that accounts for edge weights
• Note: This should not change your implementation of Graph.

Dijkstra’s is performed on a Graph, not within a Graph.
• The more well-connected two characters are, the lower

the weight and the more likely that a path is taken through
them
• The weight of an edge is equal to the inverse of how many comic

books the two characters share
• Ex: If Carol Danvers and Luke Cage appeared in 5 comic books

together, the weight of their edge would be 1/5
• No duplicate edges

Review: Shortest Paths with BFS

Destination Path Cost
A <B,A> 1
B 0
C <B,A,C> 2
D <B,D> 1
E <B,D,E> 2

From Node B

A

B

C D

E

1

1

1

1 1

1

1

Shortest Paths with Weights

A

B

C D

E

Destination Path Cost
A <B,A> 2
B 0
C <B,A,C> 5
D <B,A,C,D> 7
E <B,A,C,E> 7

From Node B
2

100

2

6 2

3

100

Paths are not the same!

BFS vs. Dijkstra’s

• BFS doesn’t work because path with minimal cost ≠ path
with fewest edges

• Dijkstra’s works if the weights are non-negative
• What happens if there is a negative edge?

• Minimize cost by repeating the cycle forever

500

100
100 100

100
5

-10

1
1

Dijkstra’s Algorithm
• Named after its inventor Edsger Dijkstra (1930-2002)

• Turing Award winner and all-around amazing computer scientist
• Other work includes Banker’s algorithm, semaphores

• The idea: reminiscent of BFS, but adapted to handle
weights
• Grow the set of nodes whose shortest distance has been computed
• Nodes not in the set will have a “best distance so far”
• A priority queue will turn out to be useful for efficiency

Dijkstra’s Algorithm
1. For each node v, set v.cost = ∞ and v.known =

false
2. Set source.cost = 0
3. While there are unknown nodes in the graph

a) Select the unknown node v with lowest cost
b) Mark v as known
c) For each edge (v,u) with weight w,

c1 = v.cost + w
c2 = u.cost
if(c1 < c2)
 u.cost = c1
 u.path = v

// cost of best path through v to u
// cost of best path to u previously known
// if the new path through v is better, update

A B

D
C

F H

E

G

0

2 2 3

1 10 2
3

1 11

7

1
9

2

4 5

Order Added to Known Set:

Example #1

vertex known? cost path
A Y 0
B ∞
C ∞
D ∞
E ∞
F ∞
G ∞
H ∞

A B

D
C

F H

E

G

0 2

4

1

2 2

1 2
3

7

9
2

4 5

Order Added to Known Set:

A

3

10

1 11

1

Example #1

vertex known? cost path
A Y 0
B ≤ 2 A
C ≤ 1 A
D ≤ 4 A
E ∞
F ∞
G ∞
H ∞

A B

D
C

F H

E

G

0 2

4

1

2 2

1 2
3

7

9
2

4 5

Order Added to Known Set:

A, C

3

10

1 11

1

Example #1

vertex known? cost path
A Y 0
B ≤ 2 A
C Y 1 A
D ≤ 4 A
E ∞
F ∞
G ∞
H ∞

A B

D
C

F H

E

G

0 2

4

1

12

2 2

1 2
3

7

9
2

4 5

Order Added to Known Set:

A, C

3

10

1 11

1

Example #1

vertex known? cost path
A Y 0
B ≤ 2 A
C Y 1 A
D ≤ 4 A
E ≤ 12 C
F ∞
G ∞
H ∞

A B

D
C

F H

E

G

0 2

4

1

12

2 2

1 2
3

7

9
2

4 5

Order Added to Known Set:

A, C, B

3

10

1 11

1

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D ≤ 4 A
E ≤ 12 C
F ∞
G ∞
H ∞

A B

D
C

F H

E

G

0 2 4

4

1

12

2 2

1 2
3

7

9
2

4 5

Order Added to Known Set:

A, C, B

3

10

1 11

1

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D ≤ 4 A
E ≤ 12 C
F ≤ 4 B
G ∞
H ∞

A B

D
C

F H

E

G

0 2 4

4

1

2 2

1 2
3

7

9
2

4 5

Order Added to Known Set:

A, C, B, D

12

3

10

1 11

1

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F ≤ 4 B
G ∞
H ∞

A B

D
C

F H

E

G

0 2 4

4

1

2 2

1 2
3

7

9
2

4 5

Order Added to Known Set:

A, C, B, D, F

12

3

10

1 11

1

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G ∞
H ∞

A B

D
C

F H

E

G

0 2 4 7

4

1

2 2

1 2
3

7

9
2

4 5

Order Added to Known Set:

A, C, B, D, F

12

3

10

1 11

1

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G ∞
H ≤ 7 F

A B

D
C

F H

E

G

0 2 4 7

4

1

2 2

1 2
3

7

9
2

4 5

Order Added to Known Set:

A, C, B, D, F, H

12

3

10

1 11

1

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G ∞
H Y 7 F

A B

D
C

F H

E

G

0 2 4 7

4

1 8

2 2

1 2
3

7

9
2

4 5

Order Added to Known Set:

A, C, B, D, F, H

12

3

10

1 11

1

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G ≤ 8 H
H Y 7 F

A B

D
C

F H

E

G

0 2 4 7

4

1 8

2 2

1 2
3

7

9
2

4 5

Order Added to Known Set:

A, C, B, D, F, H, G

12

3

10

1 11

1

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G Y 8 H
H Y 7 F

A B

D
C

F H

E

G

0 2 4 7

4

1 8

2 2

1 2
3

7

9
2

4 5

Order Added to Known Set:

A, C, B, D, F, H, G

11

3

10

1 11

1

Example #1

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 11 G
F Y 4 B
G Y 8 H
H Y 7 F

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2

1 2
3

7

9
2

4

vertex known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

5

Order Added to Known Set:

A, C, B, D, F, H, G, E

3

10

1 11

1

Example #1

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

1 10 2
3

1
11

7

1
9

2

4 5

Interpreting the Results
vertex known? cost path

A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

A B

D
C

F H

E

G

2 2 3

1
3

1
4

A B

C
D

F

E

G

0

2

1
2 5

1
1

1

2 6
5 3

10

Order Added to Known Set:

Example #2

vertex known? cost path
A Y 0
B ∞
C ∞
D ∞
E ∞
F ∞
G ∞

A B

C
D

F

E

G

0 3

4

2

1
2

6

2

1
2 5

1
1

1

2 6
5 3

10

Order Added to Known Set:

A, D, C, E, B, F, G

Example #2

vertex known? cost path
A Y 0
B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F Y 4 C
G Y 6 D

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 while(not all nodes are known) {
 b = dequeue

 b.known = true
 for each edge (b,a) in G {
 if(!a.known) {
 if(b.cost + weight((b,a)) < a.cost){
 a.cost = b.cost + weight((b,a))
 a.path = b
 }
 }
 brackets…

O(|V|)

O(|V|2)

O(|E|)

O(|V|2)

Pseudocode Attempt #1

Can We Do Better?
• Increase efficiency by considering lowest cost unknown

vertex with sorting instead of looking at all vertices
• PriorityQueue is like a queue, but returns elements by

lowest value instead of FIFO

Priority Queue
• Increase efficiency by considering lowest cost unknown

vertex with sorting instead of looking at all vertices
• PriorityQueue is like a queue, but returns elements by

lowest value instead of FIFO
• Two ways to implement:

1. Comparable
a) class Node implements Comparable<Node>
b) public int compareTo(other)

2. Comparator
a) class NodeComparator extends Comparator<Node>
b) new PriorityQueue(new NodeComparator())

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 if (b.known) continue;
 b.known = true
 for each edge (b,a) in G {
 if(!a.known) {
 add(b.cost + weight((b,a)))
 }
brackets…

O(|V|)

O(|V|log|V|)

O(|E|log|V|)

O(|E|log|V|)

Pseudocode Attempt #2 Proof of Correctness
• All the “known” vertices have the correct shortest path

through induction
• Initially, shortest path to start node has cost 0
• If it stays true every time we mark a node “known”, then by

induction this holds and eventually everything is “known” with
shortes path

• Key fact: When we mark a vertex “known” we won’t
discover a shorter path later
• Remember, we pick the node with the min cost each round
• Once a node is marked as “known”, going through another path will

only add weight
• Only true when node weights are positive

MIDTERM QUESTIONS!

Midterm Question 6
A. @returns some number between x − 10 and x + 10

B. @returns some number between x − 5 and x + 5

C. @requires x > 0
 @returns some number between x − 5 and x + 5

D. @requires x > 0 or x < −5
 @returns some number between x − 5 and x + 5

E. @requires x > 0
 @throws IllegalArgument if x > 100
 @returns some number between x − 10 and x + 10

B

strongest

weakest

A C

D

B

E

