Section 4:
Graphs and Testing

Slides adapted from Alex Mariakakis, with
material from Krysta Yousoufian, Mike
Ernst, and Kellen Donohue

Agenda

- Graphs

- Java assertions

- Internal vs. external testing

- Representation invariants in real code

Graphs

Children of A

Parents of D

Path from
AtoC

Shortest path
from Ato C?

Shortest path
from A to B?

Petr Simecek’s FB Mining

Chris Webb’s Eurovision Voting

Java Asserts

Demo!

Enabling Java Asserts

S © | . Right click the .java file
e S G you are running
o -]l » Goto“RunAs” — “Run
et P Configurations”
) || + Click on the
T o “Arguments” tab
R ~ | = Enter"-ea" under “VM
,:.mw. = e arguments”

Assertions vs. Exceptions

public class LitterBox {

public class LitterBox { ArrayList<Kitten> kittens;

ArrayList<Kitten> kittens;
public Kitten getKitten(int n) {
try {
return kittens(n);
} catch (Exception e) {
}

public Kitten getKitten(int n) {
assert(n >="0);
| return kittens(n);
} }

}
- Assertions should check for things that should never
happen
- Exceptions should check for things that might happen

- “Exceptions address the robustness of your code, while
assertions address its correctness”

Java Asserts

- assert(someValue); where someValue is a non-obvious
boolean

- someValue should always be true unless something is
broken

- Asserts do not run unless specifically enabled

- Our autograder will enable them, so remember to enable
asserts!

Internal vs. External Testing

« Internal: JUnit
- How you decide to abstract the object
- Checked with implementation tests

- If it's something you're testing about your implementation that might
not be true for everyone’s, it's internal.

- External: test script
- How the client uses the object
- Checked with specification tests

- If it's something that should be true for anybody’s implementation
from the same spec, it's external.

.
A JUnit Test Class

- Amethod with @Test is flagged as a JUnit test
« All @Test methods run when JUnit runs

import org.junit.*;
import static org.junit.Assert.*;

public class TestSuite {

@QTest
public void TestNamel () {

}

|
JUnit Value Checking

- assertEquals, assertNull, assertNotSame, etc...
- These are not the same as Java assert

- Verify that a value matches expectations:
* assertEquals (42, meaningOfLife());
assertTrue (list.isEmpty());
- If the value isn’t what it should be, the test fails
- Test immediately terminates
- Other tests in the test class are still run as normal
- Results show details of failed tests

JUnit Value Checking

assertTrue (test) the boolean test is false

assertFalse (test) the boolean test is true

assertEquals (expected, actual) the values are not equal

assertSame (expected, actual) the values are not the same (by ==

assertNotSame (expected, actual) the values are the same (by ==
assertNull (value) the given value is not null

assertNotNull (value) the given value is null

- And others: http://www.junit.org/apidocs/org/junit/Assert.html

« Each method can also be passed a string to display if it
fails:
* assertEquals ("message",

expected, actual)

Checking for Exceptions

- Verify that a method throws an exception when it should

- Test passes if specified exception is thrown, fails
otherwise

- Only time it's OK to write a test without a form of asserts

@Test (expected=IndexOutOfBoundsException.class)
public void testGetEmptyList () {
List<String> list =
list.get (0);

new ArrayList<String>();

Setup and Teardown

- Methods to run before/after each test case method is called:

@Before
public void name() { ... }
QAfter
public void name() { ... }

- Methods to run once before/after the entire test class runs:

@BeforeClass
public static void name() { ... }
@AfterClass

public static void name ()

{ ...

Setup and Teardown

public class Example {
List empty;

@Before

public void initialize() {
empty = new ArrayList();

}

@Test

public void size() {

}

@Test

public void remove () {

}

Don’t Repeat Yourself

- Can declare fields for frequently-used values or constants
* private static final String DEFAULT NAME =
“MickeyMouse”;
« private static final User DEFAULT_ USER =
User (“lazowska”, “Ed”, “Lazowska”);

new

- Can write helper methods, etc.
« private void eqg(RatNum ratNum, String rep) {
assertEquals (rep, ratNum.toString()):;
}
« private BinaryTree getTree(int[] items) {

// construct BinaryTree and add each element in items

|
#1: Be descriptive

- When a test fails, JUnit tells you:
- Name of test method
- Message passed into failed assertion
- Expected and actual values of failed assertion
- The more descriptive this information is, the easier it is to
diagnose failures

Level of goodness |Example _________________|

Good testAddDaysWithinMonth ()

Not so good testAddDaysl (), testAddDays2 ()

Bad testl(), test2()

Overkill TestAddDaysOneDayAndThenFiveDaysStartingOn

JanuaryTwentySeventhAndMakeSureItRollsBack
ToJanuaryAfterRollingToFebruary ()

|
#1: Be descriptive

- Take advantage of message, expected, and actual
values
- No need to repeat expected/actual values or info in test
name

- Use the right assert for the occasion:

- assertEquals (expected, actual) instead of
assertTrue (expected.equals (actual))

|
Let's put it all together!

public class DateTest {

// Test addDays when it causes a rollover between months
@Test
public void testAddDaysWrapToNextMonth () {
Date actual = new Date (2050, 2, 15);
actual.addDays (14);
new Date (2050, 3, 1);

assertEquals ("date after +14 days",
actual) ;

Date expected =

expected,

|
Let's put it all together!

public class DateTest {

’ Tells JUnit that this method is a test to run

// Test addDays when it causes a rollover between months
public void testAddDaysWrapToNextMonth () {
Date actual = new Date (2050, 2, 15);
actual.addDays (14);
new Date (2050, 3,

assertEquals ("date after +14 days",
actual) ;

Date expected = 1);

expected,

|
Let's put it all together!

public class DateTest {

’ Descriptive method name

// Test addDays when it causes a rollover between months

QTest

public void CestAddDaysWrapToNextMonth ()
Date actual = ne 7 , 15);

actual.addDays (14) ;
new Date (2050,

3, 1);
assertEquals ("date after +14 days",
actual) ;

Date expected =

expected,

|
Let's put it all together!

public class DateTest {

’ Use assertion to check expected results

// Test addDays when it causes a rollover between months
@Test
public void testAddDaysWrapToNextMonth () {
new Date (2050, 2, 15);
actual.addDays (14);
Date expected = new Date (2050, 3, 1);
'date after +14 days", expected,

actual) ;

Date actual =

.
Let's put it all together!

public class DateTest {

Message gives details about the test in
case of failure

// Test addDays when it causes a rollover between months
QTest

public void testAddDaysWrapToNextMonth () {

new Date (2050, 2, 15);
actual.addDays (14);

Date actual =

Date expected = new Date (2050, 3, 1);

assertEquals('date after +14 days"

actual) ;

expected,

#2: Keep tests small

- Ideally, test one thing at a time
- “Thing” usually means one method under one input condition

- Not always possible — but if you test x () using vy (), try to test v ()
in isolation in another test

- Low-granularity tests help you isolate bugs
- Tell you exactly what failed and what didn’t

- Only a few (likely one) assert statements per test
- Test halts after first failed assertion
- Don’t know whether later assertions would have failed

|
#3: Be thorough

- Consider each equivalence class
- Items in a collection: none, one, many
- Consider common input categories
- Math.abs () : negative, zero, positive values
- Consider boundary cases
- Inputs on the boundary between equivalence classes
< Person.isMinor ():age <18, age == 18, age > 18
- Consider edge cases
- -1, 0, 1, empty list, arr.length, arr.length-1
- Consider error cases
- Empty list, null object

.
Other Guidelines

- Test all methods
- Constructors are exception to the rule
- Keep tests simple
= Minimize if/else, loops, switch, etc.
- Don’t want to debug your tests!
- Tests should always have at least one assert
+ Unless testing that an exception is thrown
- Testing that an exception is not thrown is unnecessary
- assertTrue (true) doesn’t count!
- Tests should be isolated
- Not dependent on side effects of other tests
- Should be able to run in any order

]
JUnit Summary

- Tests need failure atomicity so we know exactly what
failed

- Each test should have a descriptive name
- Assert methods should have clear messages to know what failed
- Write many small tests, not one big test

- Test for expected errors / exceptions

- Choose a descriptive assert method, not always
assertTrue

- Choose representative test cases from equivalent input
classes

- Avoid complex logic in test methods if possible

- Use helpers, @Before to reduce redundancy between
tests

External Testing

- This is for your client (us!)

- HW5 and on, class specifications are no longer provided;
everyone’s might be different

- So how do we test your code?

|
Test Script Language

- Text file with one command listed per line
- First word is always the command name
- Remaining words are arguments

- Commands will be translated to some method(s) in your
code

|
Test Script Language

Create a graph
CreateGraph graphl

Add a pair of nodes
AddNode graphl nl
AddNode graphl n2

Add an edge

AddEdge graphl nl n2 el

Print the nodes in the graph
and the outgoing edges from nl

ListNodes graphl
ListChildren graphl nl

|
Test Script Language

CreateGraph A
AddNode A nl
AddNode A n2

CreateGraph B
ListNodes B
AddNode A n3

\
o0

AddEdge A n3 nl e31
AddNode B nl
AddNode B n2
AddEdge B n2 nl e2l
AddEdge A nl n3 el3
AddEdge A nl n2 el2

ListNodes A
ListChildren A nl
ListChildren B n2

|
CheckRep: Linked List

public void insert (element e) {

checkRep () ;

// Do things!

checkRep () ;

|
CheckRep

private void checkRep () {
// Checks invariants: ordered linked list
quick!
check list not null
depends

check 1list elements are in ascending order

check list first.prev is null quick!

|
CheckRep

private void checkRep () {
ordered linked list

// Checks invariants:

check list not null

if (Thisprogram.DEBUG)
check list elements order

check list first.prev is null

|
CheckRep

- When should DEBUG = true?
- While debugging
- When should DEBUG = false?
- When submitting code
- Or, whenever speed is important
- Performance tests (not for 331!)
- HWG6 grading timeouts

- While coding, sometimes (you don’t want to wait thirty
minutes to test every time you change code)

