
SSECTION 1:
VERSION CONTROL +
ECLIPSE

cse331-staff@cs.washington.edu

slides borrowed and adapted from Alex Mariakis and CSE 390a

OUTLINE
• Version control

• IDEs – Eclipse
• Debugging

WHAT IS VERSION
CONTROL?
• Also known as source control/revision control
• System for tracking changes to code

• Software for developing software

• Essential for managing projects
• See a history of changes
• Revert back to an older version
• Merge changes from multiple sources

• We’ll be talking about Subversion, but there are
alternatives

�Git, Mercurial, CVS
× Email, Dropbox, USB sticks

VERSION CONTROL
ORGANIZATION
A repository stores the
master copy of the project

• Someone creates the repo for a new project
• Then nobody touches this copy directly
• Lives on a server everyone can access

Each person checks out her
own working copy

• Makes a local copy of the repo
• You’ll always work off of this copy
• The version control system syncs the repo

and working copy (with your help)

svn

Working
copy

Working
copy

Repository

REPOSITORY
• Can create the repository anywhere

• Can be on the same computer that you’re going to work on,
which might be ok for a personal project where you just want
rollback protection

• But, usually you want the repository to be robust:
• On a computer that’s up and running 24/7

• Everyone always has access to the project
• On a computer that has a redundant file system

• No more worries about that hard disk crash wiping away your
project!

• We’ll use attu! (attu.cs.washington.edu)

VERSION CONTROL
COMMON ACTIONS
Most common commands:
Commit / checkin

• integrate changes from your working copy
into the repository

Update
• integrate changes into your working copy

from the repository

Working
copy

Repository

svn

co
m

m
it

 update

VERSION CONTROL
COMMON ACTIONS
(CONT.)
More common commands:
Add, delete

• add or delete a file in the repository
• just putting a new file in your working copy

does not add it to the repo!

Revert
• wipe out your local changes to a file

Resolve, diff, merge
• handle a conflict – two users editing the

same code
Working

copy

Repository

svn

co
m

m
it

 update

HOW TO USE
SUBVERSION
1. Eclipse plugin: Subclipse
2. GUI interface: TortoiseSVN, NautilusSVN
3. Command line: PuTTY

THIS QUARTER
• We distribute starter code by adding it to your

repo
• You will code in Eclipse
• You turn in your files by adding them to the repo

and committing your changes
• You will validate your homework by SSHing onto

attu and running an Ant build file

DDEMO!

http://www.cs.washington.edu/education/cour
ses/cse331/14au/tools/versioncontrol.html

WHAT IS ECLIPSE?
• Integrated development environment (IDE)
• Allows for software development from start

to finish
• Type code with syntax highlighting, warnings, etc.
• Run code straight through or with breakpoints (debug)
• Break code

• Mainly used for Java
• Supports C, C++, JavaScript, PHP, Python, Ruby, etc.

• Alternatives
• NetBeans, Visual Studio, IntelliJIDEA

ECLIPSE SHORTCUTS
Shortcut Purpose
Ctrl + D Delete an entire line
Alt + Shift + R Refactor (rename)
Ctrl + Shift + O Clean up imports
Ctrl + / Toggle comment
Ctrl + Shift + F Make my code look nice �

ECLIPSE DEBUGGING
• System.out.println() works for debugging…

• It’s quick
• It’s dirty
• Everyone knows how to do it

• …but there are drawbacks
• What if I’m printing something that’s null?
• What if I want to look at something that can’t easily be printed

(e.g., what does my binary search tree look like now)?
• Eclipse’s debugger is powerful…if you know how to use it

ECLIPSE DEBUGGING

Double click in the grey area to the left of your code to set a
breakpoint. A breakpoint is a line that the Java VM will stop at
during normal execution of your program, and wait for action from
you.

ECLIPSE DEBUGGING
Click the Bug icon to run in Debug
mode. Otherwise your program
won’t stop at your breakpoints.

ECLIPSE DEBUGGING

Controlling your program
while debugging is done
with these buttons

ECLIPSE DEBUGGING
Play, pause, stop work just
like you’d expect

ECLIPSE DEBUGGING

Step Into

Steps into the method at the
current execution point – if
possible. If not possible then
just proceeds to the next
execution point.

If there’s multiple methods
at the current execution
point step into the first one
to be executed.

ECLIPSE DEBUGGING
Step Over

Steps over any method calls at
the current execution point.

Theoretically program proceeds
just to the next line.

BUT, if you have any breakpoints
set that would be hit in the
method(s) you stepped over,
execution will stop at those
points instead.

ECLIPSE DEBUGGING

Step Out

Allows method to finish and
brings you up to the point
where that method was called.

Useful if you accidentally step
into Java internals (more on
how to avoid this next).

Just like with step over though
you may hit a breakpoint in the
remainder of the method, and
then you’ll stop at that point.

ECLIPSE DEBUGGING
Enable/disable step filters

There’s a lot of code you don’t
want to enter when debugging,
internals of Java, internals of
JUnit, etc.

You can skip these by
configuring step filters.

Checked items are skipped.

ECLIPSE DEBUGGING

Stack Trace

Shows what methods have
been called to get you to
current point where program
is stopped.

You can click on different
method names to navigate
to that spot in the code
without losing your current
spot.

ECLIPSE DEBUGGING
Variables Window

Shows all variables, including
method parameters, local
variables, and class variables,
that are in scope at the current
execution spot. Updates when
you change positions in the
stackframe. You can expand
objects to see child member
values. There’s a simple value
printed, but clicking on an item
will fill the box below the list
with a pretty format.

Some values are in the form of
ObjectName (id=x), this can be
used to tell if two variables are
reffering to the same object.

ECLIPSE DEBUGGING

Variables that have changed
since the last break point are
highlighted in yellow.

You can change variables right
from this window by double
clicking the row entry in the
Value tab.

ECLIPSE DEBUGGING
Variables that have changed
since the last break point are
highlighted in yellow.

You can change variables right
from this window by double
clicking the row entry in the
Value tab.

ECLIPSE DEBUGGING

There’s a powerful right-click
menu.

• See all references to a given

variable
• See all instances of the

variable’s class
• Add watch statements for

that variables value (more
later)

ECLIPSE DEBUGGING
Show Logical Structure

Expands out list items so it’s as
if each list item were a field (and
continues down for any children
list items)

ECLIPSE DEBUGGING

Breakpoints Window

Shows all existing breakpoints in
the code, along with their
conditions and a variety of
options.

Double clicking a breakpoint will
take you to its spot in the code.

ECLIPSE DEBUGGING
Enabled/Disabled Breakpoints

Breakpoints can be temporarily
disabled by clicking the
checkbox next to the
breakpoint. This means it won’t
stop program execution until re-
enabled.

This is useful if you want to hold
off testing one thing, but don’t
want to completely forget about
that breakpoint.

ECLIPSE DEBUGGING

Hit count

Breakpoints can be set to occur
less-frequently by supplying a
hit count of n.

When this is specified, only each
n-th time that breakpoint is hit
will code execution stop.

ECLIPSE DEBUGGING
Conditional Breakpoints

Breakpoints can have
conditions. This means the
breakpoint will only be triggered
when a condition you supply is
true. This is very useful for
when your code only breaks on
some inputs!

Watch out though, it can make
your code debug very slowly,
especially if there’s an error in
your breakpoint.

ECLIPSE DEBUGGING

Disable All Breakpoints

You can disable all breakpoints
temporarily. This is useful if
you’ve identified a bug in the
middle of a run but want to let
the rest of the run finish
normally.

Don’t forget to re-enable
breakpoints when you want to
use them again.

ECLIPSE DEBUGGING
Break on Java Exception

Eclipse can break whenever a
specific exception is thrown.
This can be useful to trace an
exception that is being
“translated” by library code.

ECLIPSE DEBUGGING

Expressions Window

Used to show the results of custom
expressions you provide, and can
change any time.

Not shown by default but highly
recommended.

ECLIPSE DEBUGGING
Expressions Window

Used to show the results of custom
expressions you provide, and can
change any time.

Resolves variables, allows method
calls, even arbitrary statements
“2+2”

Beware method calls that mutate
program state – e.g. stk1.clear() or
in.nextLine() – these take effect
immediately

ECLIPSE DEBUGGING

Expressions Window

These persist across projects, so
clear out old ones as necessary.

ECLIPSE DEBUGGING

Demo 2!!

ECLIPSE DEBUGGING
• The debugger is awesome, but not perfect

• Not well-suited for time-dependent code
• Recursion can get messy

• Technically, we talked about a “breakpoint debugger”
• Allows you to stop execution and examine variables
• Useful for stepping through and visualizing code
• There are other approaches to debugging that don’t involve a

debugger

