
CSE 331
Software Design & Implementation

Dan Grossman
Fall 2014

Abstraction Functions
(Based on slides by Mike Ernst, David Notkin, Hal Perkins)

Connecting implementations to specs
Representation Invariant: maps Object → boolean

– Indicates if an instance is well-formed
– Defines the set of valid concrete values
– Only values in the valid set make sense as implementations of an

abstract value
– For implementors/debuggers/maintainers of the abstraction:

no object should ever violate the rep invariant
• Such an object has no useful meaning

Abstraction Function: maps Object → abstract value
– What the data structure means as an abstract value
– How the data structure is to be interpreted
– Only defined on objects meeting the rep invariant
– For implementors/debuggers/maintainers of the abstraction:

Each procedure should meet its spec (abstract values) by “doing
the right thing” with the concrete representation
 2 CSE331 Fall 2014

Rep inv. constrains structure, not meaning

An implementation of insert that preserves the rep invariant:
public void insert(Character c) {
 Character cc = new Character(encrypt(c));
 if (!elts.contains(cc))
 elts.addElement(cc);
}
public boolean member(Character c) {
 return elts.contains(c);
}

Program is still wrong
– Clients observe incorrect behavior
– What client code exposes the error?
– Where is the error?
– We must consider the meaning
– The abstraction function helps us

CharSet s = new CharSet();
s.insert('a');
if (s.member('a'))
 …

3 CSE331 Fall 2014

Abstraction function: rep→abstract value

The abstraction function maps the concrete representation to the
abstract value it represents

AF: Object → abstract value
AF(CharSet this) = { c | c is contained in this.elts }

“set of Characters contained in this.elts”

Not executable because abstract values are “just” conceptual

The abstraction function lets us reason about what [concrete]

methods do in terms of the clients’ [abstract] view

4 CSE331 Fall 2014

Abstraction function and insert

Goal is to satisfy the specification of insert:
// modifies: this
// effects: thispost = thispre U {c}

public void insert (Character c) {…}

The AF tells us what the rep means, which lets us place the blame
AF(CharSet this) = { c | c is contained in this.elts }

Consider a call to insert:
 On entry, meaning is AF(thispre) ≈ eltspre
 On exit, meaning is AF(thispost) = AF(thispre) U {encrypt('a')}

What if we used this abstraction function instead?

AF(this) = { c | encrypt(c) is contained in this.elts }
 = { decrypt(c) | c is contained in this.elts }

5 CSE331 Fall 2014

The abstraction function is a function

Why do we map concrete to abstract and not vice versa?

• It’s not a function in the other direction

– Example: lists [a,b] and [b,a] might each represent the
set {a, b}

• It’s not as useful in the other direction

– Purpose is to reason about whether our methods are
manipulating concrete representations correctly in terms of
the abstract specifications

6 CSE331 Fall 2014

Stack AF example
Abstract stack with array and
“top” index implementation

new() 0 0 0

push(17) 17 0 0

T
o
p
=
1

push(-9) 17 -9 0

T
o
p
=
2

T
o
p
=
0

stack = <>

stack = <17>

stack = <17,-9>

pop() 17 -9 0

stack = <17>

T
o
p
=
1

Abstract states are the same
stack = <17> = <17>

Concrete states are different
<[17,0,0], top=1>

≠
<[17,-9,0], top=1>

AF is a function

Inverse of AF is not a function
7 CSE331 Fall 2014

Benevolent side effects
Different implementation of member:

boolean member(Character c1) {
 int i = elts.indexOf(c1);
 if (i == -1)
 return false;
 // move-to-front optimization
 Character c2 = elts.elementAt(0);
 elts.set(0, c1);
 elts.set(i, c2);
 return true;
}

• Move-to-front speeds up repeated membership tests
• Mutates rep, but does not change abstract value

– AF maps both reps to the same abstract value
• Precise reasoning/explanation for “clients can’t tell”

r r’

a

op
��

AF AF

8 CSE331 Fall 2014

For any correct operation…

9 CSE331 Fall 2014

Writing an abstraction function

Domain: all representations that satisfy the rep invariant
Range: can be tricky to denote

For mathematical entities like sets: easy
For more complex abstractions: give names to specification
– AF defines the value of each “specification field”

Overview section of the specification should provide a notation of
writing abstract values

– Could implement a method for printing in this notation
• Useful for debugging
• Often a good choice for toString

10 CSE331 Fall 2014

Data Abstraction: Summary
Rep invariant

– Which concrete values represent abstract values
Abstraction function

– For each concrete value, which abstract value it represents

Together, they modularize the implementation

– Neither one is part of the ADT’s specification
– Both are needed to reason an implementation satisfies the

specification

In practice, representation invariants are documented more often

and more carefully than abstraction functions
– A more widely understood and appreciated concept

11 CSE331 Fall 2014

