CSE 331
Software Design & Implementation

Dan Grossman
Fall 2014
Abstraction Functions
(Based on slides by Mike Ernst, David Notkin, Hal Perkins)
Connecting implementations to specs

Representation Invariant: maps Object → boolean
- Indicates if an instance is *well-formed*
- Defines the set of valid concrete values
- Only values in the valid set make sense as implementations of an abstract value
- **For implementors/debuggers/maintainers of the abstraction:** no object should ever violate the rep invariant
 - Such an object has no useful meaning

Abstraction Function: maps Object → abstract value
- What the data structure *means* as an abstract value
- How the data structure is to be interpreted
- Only defined on objects meeting the rep invariant
- **For implementors/debuggers/maintainers of the abstraction:**
 Each procedure should meet its spec (abstract values) by “doing the right thing” with the concrete representation
Rep inv. constrains structure, not meaning

An implementation of `insert` that preserves the rep invariant:

```java
public void insert(Character c) {
    Character cc = new Character(encrypt(c));
    if (!elts.contains(cc))
        elts.addElement(cc);
}
```

```java
public boolean member(Character c) {
    return elts.contains(c);
}
```

program is still wrong

- Clients observe incorrect behavior
- What client code exposes the error?
- Where is the error?
- We must consider the meaning
- The abstraction function helps us
Abstraction function: rep → abstract value

The abstraction function maps the concrete representation to the abstract value it represents.

AF: Object → abstract value

AF(CharSet this) = \{ c | c is contained in this.elts \}

“set of Characters contained in this.elts”

Not executable because abstract values are “just” conceptual

The abstraction function lets us reason about what [concrete] methods do in terms of the clients’ [abstract] view.
Abstraction function and \texttt{insert}

Goal is to satisfy the specification of \texttt{insert}:

\begin{verbatim}
// modifies: this
// effects: this_{post} = this_{pre} U \{c\}
public void insert (Character c) {...}
\end{verbatim}

The AF tells us what the rep means, which lets us place the blame

\[\text{AF(CharSet this)} = \{ c | c \text{ is contained in this.elts} \} \]

Consider a call to \texttt{insert}:

On \textit{entry}, meaning is \(\text{AF(this}_{\text{pre}}) \approx \text{elts}_{\text{pre}} \)

On \textit{exit}, meaning is \(\text{AF(this}_{\text{post}}) = \text{AF(this}_{\text{pre}}) U \{\text{encrypt(}'a'\text{'})\} \)

What if we used this abstraction function instead?

\[\text{AF(this)} = \{ c | \text{encrypt(c)} \text{ is contained in this.elts} \} \]
\[= \{ \text{decrypt(c)} | c \text{ is contained in this.elts} \} \]
The abstraction function is a function

Why do we map concrete to abstract and not vice versa?

• It’s not a function in the other direction
 – Example: lists \([a, b]\) and \([b, a]\) might each represent the set \(\{a, b\}\)

• It’s not as useful in the other direction
 – Purpose is to reason about whether our methods are manipulating concrete representations correctly in terms of the abstract specifications
Stack AF example

new() 0 0 0

stack = <>

push(17) 17 0 0

stack = <17>

pop() 17 -9 0

stack = <>

Abstract states are the same
stack = <17> = <17>

Concrete states are different
<[17,0,0], top=1> ≠ <[17,-9,0], top=1>

AF is a function
Inverse of AF is not a function
Benevolent side effects

Different implementation of `member`:

```java
boolean member(Character c1) {
    int i = elts.indexOf(c1);
    if (i == -1)
        return false;
    // move-to-front optimization
    Character c2 = elts.elementAt(0);
    elts.set(0, c1);
    elts.set(i, c2);
    return true;
}
```

- Move-to-front speeds up repeated membership tests
- Mutates rep, but does not change *abstract* value
 - *AF maps both reps to the same abstract value*
 - Precise reasoning/explanation for “clients can’t tell”
For any correct operation…
Writing an abstraction function

Domain: all representations that satisfy the rep invariant
Range: can be tricky to denote
 For mathematical entities like sets: easy
 For more complex abstractions: give names to specification
 – AF defines the value of each “specification field”

Overview section of the specification should provide a notation of writing abstract values
 – Could implement a method for printing in this notation
 • Useful for debugging
 • Often a good choice for toString
Data Abstraction: Summary

Rep invariant

– Which concrete values represent abstract values

Abstraction function

– For each concrete value, which abstract value it represents

Together, they modularize the implementation

– Neither one is part of the ADT’s specification
– Both are needed to reason an implementation satisfies the specification

In practice, representation invariants are documented more often and more carefully than abstraction functions

– A more widely understood and appreciated concept