CSE 331
Software Design & Implementation

Dan Grossman
Fall 2014

Representation Invariants
(Based on slides by Mike Ernst, David Notkin, Hal Perkins)

A data abstraction is defined by a
specification

A collection of procedural abstractions
— Not a collection of procedures

Together, these procedural abstractions provide some set of values
All the ways of directly using that set of values
— Creating
— Manipulating
— Observing

« Creators and producers: make new values
« Mutators: change the value (but don't affect ==

 Observers: allow one to distinguish different values

CSE331 Autumn 2014 2

ADTs and specifications

« So far, we have only specified ADTs
— Specification makes no reference to the implementation

« Of course, we need [guidelines for how] to implement ADTs

« Of course, we need [guidelines for how] to ensure our
Implementations satisfy our specifications

« Two intellectual tools are really helpful...

CSE331 Autumn 2014

Connecting implementations to specs

Representation Invariant: maps Object — boolean

Indicates if an instance is well-formed
Defines the set of valid concrete values

Only values in the valid set make sense as implementations of an
abstract value

For implementors/debuggers/maintainers of the abstraction:
no object should ever violate the rep invariant

« Such an object has no useful meaning

Abstraction Function: maps Object — abstract value

What the data structure means as an abstract value
How the data structure is to be interpreted
Only defined on objects meeting the rep invariant

For implementors/debuggers/maintainers of the abstraction:
Each procedure should meet its spec (abstract values) by “doing
the right thing” with the concrete representation

CSE331 Autumn 2014 4

Implementing a Data Abstraction (ADT)

To implement a data abstraction:
— Select the representation of instances, “the rep”
* In Java, typically instances of some class you define
— Implement operations in terms of that rep

Choose a representation so that:
— It is possible to implement required operations
— The most frequently used operations are efficient
« But which will these be?
» Abstraction allows the rep to change later

CSE331 Autumn 2014

Example: CharSet Abstraction

// Overview: A CharSet is a finite mutable set of Characters

// Reffects: creates a fresh, empty CharSet
public CharSet() {..}

// @modifies: this
// @effects: this_,. + {c}
public void insert (Character c) {..}

= this,,

// @modifies: this
// Reffects: this,,
public void delete (Character c) {..}

= this,.. - {c}

// Qreturn: (c € this)
public boolean member (Character c) {..}

// Qreturn: cardinality of this
public int size() {..}

CSE331 Autumn 2014 6

An implementation: Is It right?

class CharSet {

private List<Character> elts =
new ArrayList<Character>() ;

public void insert (Character) {

elts.add(c) ; CharSet s = new CharSet() ;
} Character a = new Character('a');
public void delete(Cl s.insert (a);

elts.remove (c) ; s.insert (a) ;
} s.delete(a) ;

public boolean membe:

return elts.contai::"f $E S TUERIOERE))]
} System.out.print ("wrong") ;

public int size() { else
return elts.size() System.out.print ("right") ;
}

}
Where iIs the error?

CSE331 Autumn 2014 7

Where Is the Error?

« Answer this and you know what to fix

 Perhaps delete is wrong
— Should remove all occurrences?

 Perhaps insert is wrong
— Should not insert a character that is already there?

 How can we know?
— The representation invariant tells us

— Ifit's “our code’, this is how we document our choice for “the
right answer”

CSE331 Autumn 2014

The representation invariant

» Defines data structure well-formedness

* Must hold before and after every CharSet operation

» QOperations (methods) may depend on it

* Write it like this:

class CharSet {

// Rep invariant:
// elts has no nulls and no duplicates
private List<Character> elts = ..

Or, more formally (if you prefer):
V indices i of elts . elts.elementAt(i) # null
Vv indices i, | of elts .

| #] = — elts.elementAt(i).equals(elts.elementAt()))
CSE331 Autumn 2014

Now we can locate the error

// Rep invariant:
// elts has no nulls and no duplicates

public void insert (Character c) {
elts.add(c) ;

public void delete (Character c) {

elts.remove (c) ;

CSE331 Autumn 2014

10

Another example

class Account {
private int balance;
// history of all transactions
private List<Transaction> transactions;

Real-world constraints:

 Balance 20

« Balance = Z; transactions.get(i).amount
Implementation-related constraints:

* Transactions # null

* No nulls in transactions

CSE331 Autumn 2014

11

Checking rep invariants

Should code check that the rep invariant holds?
— Yes, if it's inexpensive [depends on the invariant]
— Yes, for debugging [even when it's expensive]
— Often hard to justify turning the checking off
— Some private methods need not check (Why?)

A great debugging technique:

Design your code to catch bugs by implementing and using
rep-invariant checking

CSE331 Autumn 2014

12

Checking the rep invariant

Rule of thumb: check on entry and on exit (why?)

public void delete (Character c) {
checkRep () ;
elts.remove (c) ;

// Is this guaranteed to get called?
// (could guarantee it with a finally block)
checkRep () ;

}

/** Verify that elts contains no duplicates. */
private void checkRep () {
for (int 1 = 0; i1 < elts.size(); i++) {
assert elts.indexOf (elts.elementAt(i)) == 1i;

}

} CSE331 Autumn 2014

13

Practice defensive programming

« Assume that you will make mistakes

« Write and incorporate code designed to catch them
— On entry:
« Check rep invariant
» Check preconditions
— On exit:
« Check rep invariant
» Check postconditions

« Checking the rep invariant helps you discover errors

« Reasoning about the rep invariant helps you avoid errors

CSE331 Autumn 2014 14

Listing the elements of a CharSet

Consider adding the following method to CharSet

// returns: a List containing the members of this
public List<Character> getElts() ;

Consider this implementation:

// Rep invariant: elts has no nulls and no dups
public List<Character> getElts() { return elts; }

Does the implementation of getElts preserve the rep invariant?
Kind of, sort of, not really....

CSE331 Autumn 2014 15

Representation exposure

Consider this client code (outside the CharSet implementation):
CharSet s = new CharSet() ;
Character a = new Character(’a’);
s.insert (a) ;
s.getElts () .add(a) ;
s.delete(a) ;
if (s.member (a))

« Representation exposure is external access to the rep

* Representation exposure is almost always evil
— A big deal, a common bug, you now have a name for it!

« If you do it, document why and how

— And feel guilty about it!
CSE331 Autumn 2014 16

Avolding representation exposure

The first step for getting help is to recognize you have a problem ©
« Understand what representation exposure Is

« Design ADT implementations to make sure it doesn’t happen

« Treat rep exposure as a bug: fix your bugs

« Test for it with adversarial clients:

— Pass values to methods and then mutate them
— Mutate values returned from methods

CSE331 Autumn 2014 17

private IS not enough

« Making fields private does not suffice to prevent rep exposure
— See our example

— Issue is aliasing of mutable data inside and outside the
abstraction

Oa
(-

O C

« SO private is a hintto you: no aliases outside abstraction to
references to mutable data reachable from private fields

 Two general ways to avoid representation exposure...
CSE331 Autumn 2014 18

Avoiding rep exposure (way #1)

 One way to avoid rep exposure is to make copies of all data that
cross the abstraction barrier

— Copy Iin [parameters that become part of the implementation]
— Copy out [results that are part of the implementation]

« Examples of copying (assume Point is a mutable ADT):
class Line {
private Point s, e;
public Line (Point s, Point e) ({
this.s = new Point(s.x,s.y);
this.e = new Point(e.x,e.y);
}
public Point getStart() {
return new Point(this.s.x,this.s.y);

}

CSE331 Autumn 2014 19

Need deep copying

« “Shallow” copying is not enough
— Prevent any aliasing to mutable data inside/outside abstraction

 What's the bug (assuming Point is a mutable ADT)?
class PointSet {
private List<Point> points = ..
public List<Point> getElts () {
return new ArrayList<Point> (points);

}

* Not in example: Also need deep copying on “copy in”

CSE331 Autumn 2014 20

Avoiding rep exposure (way #2)

« One way to avoid rep exposure is to exploit the immutability of
(other) ADTs the implementation uses

— Aliasing is no problem if nobody can change data
« Have to mutate the rep to break the rep invariant

« Examples (assuming Point is an immutable ADT):
class Line {

private Point s, e;

public Line (Point s, Point e) ({
this.s = s;
this.e = e;

}

public Point getStart() {
return this.s;

}

CSE331 Autumn 2014

21

Why [not] immutabllity?

« Several advantages of immutability
— Aliasing does not matter
— No need to make copies with identical contents
— Rep invariants cannot be broken
— See CSE341 for more!

* Does require different designs (e.g., if Point immutable)
void raiseline (double deltaY) {

this.s = new Point(s.x, s.y+deltaY);
this.e = new Point(e.x, e.y+deltaY);

}

* Immutable classes in Java libraries include String,
Character, Integer, ...

CSE331 Autumn 2014

22

Deepness, redux

An immutable ADT must be immutable “all the way down”
— No references reachable to data that may be mutated

So combining our two ways to avoid rep exposure:
— Must copy-in, copy-out “all the way down” to immutable parts

CSE331 Autumn 2014 23

Back to getElts

Recall our initial rep-exposure example:

class CharSet {
// Rep invariant: elts has no nulls and no dups

private List<Character> elts = ..;

// returns: elts currently in the set

public List<Character> getElts () {
return new Arraylist<Character>(elts); //copy out!

CSE331 Autumn 2014 24

An alternative

// returns: elts currently in the set
public List<Character> getElts() { // version 1
return new ArraylList<Character>(elts) ;//copy out!

}

public List<Character> getElts() { // version 2
return Collections.unmodifiablelList<Character> (elts);

}

From the JavaDoc for Collections.unmodifiableList:

Returns an unmodifiable view of the specified list. This method allows
modules to provide users with "read-only" access to internal lists. Query
operations on the returned list "read through" to the specified list, and
attempts to modify the returned /ist... result in an
UnsupportedOperationException.

CSE331 Autumn 2014 25

The good news

public List<Character> getElts() { // version 2
return Collections.unmodifiablelList<Character> (elts)

}

— Clients cannot modify (mutate) the rep

« So they cannot break the rep invariant
— (For long lists,) more efficient than copy out
— Uses standard libraries

CSE331 Autumn 2014 26

The bad news

public List<Character> getElts() { // version 1
return new ArrayList<Character>(elts) ;//copy out!

}

public List<Character> getElts() { // version 2
return Collections.unmodifiablelList<Character> (elts)

}
The two implementations do not do the same thing!

— Both avoid allowing clients to break the rep invariant
— Both return a list containing the elements

But consider: xs = s.getElts();
s.insert('a');
xs.contains('a') ;

Version 2 is observing an exposed rep, leading to different behavior
CSE331 Autumn 2014 27

Different specifications

Ambiguity of “returns a list containing the current set elements”

“returns a fresh mutable list containing the elements in the set
at the time of the call”

Versus

“returns read-only access to a list that the ADT
continues to update to hold the current elements in the set”

A third spec weaker than both [but less simple and useful!]

“returns a list containing the current set elements. Behavior is
unspecified (!) if client attempts to mutate the list or to access the list
after the set’s elements are changed”

Also note: Version 2's spec also makes changing the rep later harder

— Only “simple” to implement with rep as a List
CSE331 Autumn 2014 28

