Reasoning about loops

So far, two things made all our examples much easier:

1. When running the code, each statement executed 0 or 1 times
2. (Therefore,) trivially the code always terminates

Neither of these hold once we have loops (or recursion)

- Will consider the key ideas with while-loops
- Introduces the essential and much more general concept of an invariant
- Will mostly ignore prove-it-terminates; brief discussion at end

Informal example

As before, consider high-level idea before the precise Hoare-triple definitions

```plaintext
// assume: x >= 0
y = 0; i=0;
// x >= 0
y = 0
i = 0
// invariant: y = sum(1,i)
while(i != x) {
    // y = sum(1,i) ∧ i != x
    i = i+1;
    // y = sum(1,i-1)
    y = y+i;
    // y = sum(1,i-1)+i
}
// i=x ∧ y = sum(1,i)
// assert: y = sum(1,x)
```

Key lessons

- To reason about a loop (that could execute any number of iterations), we need a loop invariant
- The precondition for the loop must imply the invariant
 - (Precondition stronger than (or equal to) invariant)
- Invariant plus loop-test-is-true must be enough to show the postcondition of the loop body also implies the invariant (!)
- Invariant and loop-test-is-false must be enough to show the postcondition of the loop

The Hoare logic

- Consider just a while-loop (other loop forms not so different)
 - `{P} while B S {Q}`

Such a triple is valid if there exists an invariant I such that:

- `{P} => I` invariant must hold initially
- `{I ∧ B}S{I}` body must re-establish invariant
- `{I ∧ !B} => Q` invariant must establish Q if test-is-false

The loop-test B, loop-body S, and loop-invariant I “fit together”:

- There is often more than one correct loop, but with possibly different invariants

Note definition “makes sense” even in the zero-iterations case

Example, more precisely

```plaintext
{P} while B S {Q}

- `{P} => I`  invariant must hold initially
- `{I ∧ B}S{I}`  body must re-establish invariant
- `{I ∧ !B} => Q`  invariant must establish Q if test-is-false

{x >= 0}
y = 0; i=0;
{pre: x >= 0 ∧ y = 0 ∧ i = 0}
{inv: y = sum(1,i)}
while(i != x) {
    i = i+1;
    y = y+i;
}
{post: i=x ∧ y = sum(1,i)}
{so: y = sum(1,x)}
```
A different approach

A different loop has a different invariant

{\text{x} \geq 0} \\
y = 0; \ i = 1; \\
\{\text{pre: } \text{x} \geq 0 \land y = 0 \land i = 1\} \\
\{\text{inv: } y = \sum(1,i-1)\} \\
\text{while}(i \neq \text{x}+1) \{ \\
\quad y = y+i; \\
\quad i = i+1; \\
\} \\
\{\text{post: } i = \text{x}+1 \land y = \sum(1,i-1)\} \\
\{\text{so: } y = \sum(1,x)\}

And find bugs

And this third approach doesn’t do what we want

{\text{x} \geq 0} \\
y = 0; \ i = 1; \\
\{\text{pre: } \text{x} \geq 0 \land y = 0 \land i = 1\} \\
\{\text{inv: } y = \sum(1,i-1)\} \\
\text{while}(i \neq \text{x}) \{ \\
\quad y = y+i; \\
\quad i = i+1; \\
\} \\
\{\text{post: } i = \text{x} \land y = \sum(1,i-1)\} \\
\{\text{so: } y = \sum(1,x)\}

More bugs

• And this approach has an invalid Hoare triple hidden in it

{\text{x} \geq 0} \\
y = 0; \ i = 0; \\
\{\text{pre: } \text{x} \geq 0 \land y = 0 \land i = 0\} \\
\{\text{inv: } y = \sum(1,i)\} \\
\text{while}(i \neq \text{x}) \{ \\
\quad y = y+i; \\
\quad i = i+1; \\
\quad // \text{ invariant not satsified – why? } \\
\} \\
\{\text{post: } i = \text{x} \land y = \sum(1,i)\}

Neither too strong nor too weak

• If loop invariant is too \text{strong}, it could be false!
 – Won’t be able to prove it holds either initially or after loop-body

• If loop invariant is too \text{weak}, it could
 – Leave the post-condition too weak to prove what you want
 – And/or be impossible to re-establish after the loop body

• This is the essence of why there is no complete automatic
 procedure for conjuring a loop-invariant
 – Requires \text{thinking} (or, sometimes, “guessing”)
 – Often while writing the code
 – If proof doesn’t work, invariant or code or both may need work

• There may be multiple invariants that “work” (neither too strong nor too weak), with some easier to reason about than others

A methodology

• Fortunately, programming is creative and inventive!

• Here, this means coming up with a loop and its invariant

• Won’t advocate a hard-and-fast rule, but do want to avoid the
 natural approach of “always code first, dream up invariant second”

• Instead, often surprisingly effective to go in this order:
 1. Think up the invariant first, have it guide all other steps (!)
 • What describes the milestone of each iteration?
 2. Write a loop body to maintain the invariant
 3. Write the loop test so false-implies-postcondition
 4. Write initialization code to establish invariant

Example

Set \text{max} to hold the largest value in array \text{items}

1. Think up the invariant first, have it guide all other steps
 – Invariant: \text{max} holds largest value in range 0..k-1 of \text{items}
 – Other approaches possible: Homework 2
Example

Set \textit{max} to hold the largest value in array \textit{items}

2. Write a loop body to maintain the invariant

\{\textit{inv}: \textit{max} holds largest value in \textit{items}[0..k-1]\}
while() {
 // \textit{inv} holds
 if(\textit{max} < \textit{items}[k]) {
 \textit{max} = \textit{items}[k]; // breaks \textit{inv} temporarily
 } else {
 // nothing to do
 }
 // \textit{max} holds largest value in \textit{items}[0..k]
 k = k+1; // \textit{inv} holds again
}

Edge case

• Our initialization code has a precondition: \textit{items.size} > 0

\{\textit{items.size} > 0\}
k=1;
\textit{max} = \textit{items}[0];
\{\textit{inv}: \textit{max} holds largest value in \textit{items}[0..k-1]\}
while(\textit{k} != \textit{items.size}) {
 ...
}
• Such a (specified!) precondition may be appropriate
• Else need a different postcondition ("if size is 0, ...") and a conditional that checks for the empty case
 – Or the Integer.MIN_VALUE "trick" and logical reasoning
• Neat: Precise preconditions should expose all this to you!

More examples

• Here:
 – Quotient and remainder
 – "Dutch national flag problem" (like Homework 0)

• More in reading notes:
 – Reverse an array (have to refer to "original" values)
 – Binary search (invariant about range of array left to search)

• More on Homework 2:
 – Enjoy!

Quotient and remainder

Set \textit{q} to be the quotient of \textit{x} / \textit{y} and \textit{r} to be the remainder

Pre-condition: \textit{x} > 0 \land \textit{y} > 0
Post-condition: \textit{q} \times \textit{y} + \textit{r} = \textit{x} \land \textit{r} \geq 0 \land \textit{r} < \textit{y}

A possible loop invariant: \textit{q} \times \textit{y} + \textit{r} = \textit{x} \land \textit{r} \geq 0

A loop body that preserves the invariant:

\textit{q} = \textit{q} + 1;
\textit{r} = \textit{r} - \textit{y};

The loop test that gives the invariant implies the post: \textit{y} \leq \textit{r}

Initialization to establish invariant: \textit{q} = 0; \textit{r} = \textit{x};
Put it all together

\{x > 0 \land y > 0\} // can this be weakened?
\begin{align*}
 r &= x; \\
 q &= 0; \\
 \{ \text{inv: } q^*y + r = x \land r \geq 0 \} \\
 \text{while } (y \leq r) \{ \\
 &\quad q = q + 1; \\
 &\quad r = r - y; \\
 \} \\
 \{ q^*y + r = x \land r \geq 0 \land r < y \}
\end{align*}

Pre- and post-conditions

Precondition: Any mix of red, white, and blue

Postcondition:
- Red, then white, then blue
- Number of each color same as in original array

Some potential invariants

Any of these four choices can work, making the array more-and-more sorted as you go:

More precise, and then some code

- Precondition: \(P\): arr contains \(r\) reds, \(w\) whites, and \(b\) blues
- Postcondition: \(P\): \(0 \leq i \leq j \leq \text{arr.size}
 \begin{align*}
 &\quad \text{arr}[0..i-1] \text{ is red} \\
 &\quad \text{arr}[i..j-1] \text{ is white} \\
 &\quad \text{arr}[j..\text{arr.size}-1] \text{ is blue}
 \end{align*}
- Invariant: \(P\): \(0 \leq i \leq j \leq k \leq \text{arr.size}
 \begin{align*}
 &\quad \text{arr}[0..i-1] \text{ is red} \\
 &\quad \text{arr}[i..j-1] \text{ is white} \\
 &\quad \text{arr}[k..\text{arr.size}-1] \text{ is blue}
 \end{align*}
- Initializing to establish the invariant (could do before or after body): \(i=0; j=0; k=\text{arr.size};\)

The loop test and body

\begin{align*}
 \text{while}(j!=k) \{ \\
 &\quad \text{if } (\text{arr}[j] == \text{White}) \{ \\
 &\quad \quad j = j+1; \\
 &\quad \} \text{ else if } (\text{arr}[j] == \text{Blue}) \{ \\
 &\quad \quad \text{swap} (\text{arr},j,k-1); \\
 &\quad \quad k = k-1; \\
 &\quad \} \text{ else } (// \text{arr}[j] == \text{Red}) \{ \\
 &\quad \quad \text{swap} (\text{arr},i,j); \\
 &\quad \quad i = i+1; \\
 &\quad \quad j = j+1; \\
 &\quad \} \\
 \}
\end{align*}
Aside: swap

- Reading notes write `swap(a[i], a[j])` and such
- This is not implementable in Java
 - But fine pseudocode
 - Great exercise: Write a coherent English paragraph why it is not implementable in Java (i.e., does not do what you want)
- You can implement `swap(a, i, j)` in Java
 - So previous slide and Homework 2 do it that way

When to use proofs for loops

- Most loops are so “obvious” that proofs are, in practice, overkill
 - `for(String name : friends) {...}
- Use logical reasoning when intermediate state (invariant) is unclear or edge cases are tricky or you need inspiration, etc.
- Use logical reasoning as an intellectual debugging tool
 - What exactly is the invariant?
 - Is it satisfied on every iteration?
 - Are you sure? Write code to check?
 - Did you check all the edge cases?
 - Are there preconditions you did not make explicit?

Termination

- Two kinds of loops
 - Those we want to always terminate (normal case)
 - Those that may conceptually run forever (e.g., web-server)
- So, proving a loop correct usually also requires proving termination
 - We haven’t been proving this: might just preserve invariant forever without test ever becoming false
 - Our Hoare triples say if loop terminates, postcondition holds
- How to prove termination (variants exist):
 - Map state to a natural number somehow (just “in the proof”)
 - Prove the natural number goes down on every iteration
 - Prove test is false by the time natural number gets to 0

Termination examples

- Quotient-and-remainder: `r` (starts positive, gets strictly smaller)
- Binary search: size of range still considered
- Dutch-national-flag: size of range not yet sorted (`k-j`)
- Search in a linked list: length of list not yet considered
 - Don’t know length of list, but goes down by one each time...
 - … unless list is cyclic in which case, termination not assured