
CSE 331

Software Design & Implementation

Dan Grossman

Fall 2014

Course Victory Lap
(Based on slides by Mike Ernst, David Notkin, Hal Perkins)

Today

• Reminder: Do your course evaluations (!)

• Final-exam information

• Last few topics in previous lecture

• Course “victory lap”

– High-level overview of main ideas and goals

– Connection to homeworks

– Context

• Also:

– Thank-yous

– Time permitting: Free-form Q&A

CSE331 Fall 2014 2

Final-exam information

• Tuesday, 2:30-4:20PM

• Very heavily weighted toward second half of course

• See email from me and sample exams

• As usual, “tough but fair and rewarding”

CSE331 Fall 2014 3

Victory Lap

A victory lap is an extra trip

around the track

– By the exhausted victors

 (that’s us)

Review course goals

– Slides from Lecture 1

– What makes CSE331 special

CSE331 Fall 2014 4

Huge thanks to the folks who made it work

5 CSE331 Fall 2014

Infrastructure: Xin, Chris

Sections: Meg, Aaron

Grading: Whitney, Ben, Xin, Chris, Aaron

Office hours, email questions, etc.: all

This course is itself a sophisticated system

requiring savvy design and implementation

3 slides from Lecture 1…

CSE331 Fall 2014 6

10 weeks ago: Welcome!

We have 10 weeks to move well beyond novice programmer:

• Larger programs

– Small programs are easy: “code it up”

– Complexity changes everything: “design an artifact”

– Analogy: using hammers and saws vs. making cabinets (but

not yet building houses)

• Principled, systematic software: What does “it’s right” mean?

How do we know “it’s right”? What are best practices for

“getting it right”?

• Effective use of languages and tools: Java, IDEs, debuggers,

JUnit, JavaDoc, Subversion, …

– Principles are ultimately more important than details

• You will forever learn details of new tools/versions

 CSE331 Fall 2014 7

10 weeks ago: Goals

• CSE 331 will teach you to how to write correct programs

• What does it mean for a program to be correct?

– Specifications

• What are ways to achieve correctness?

– Principled design and development

– Abstraction and modularity

– Documentation

• What are ways to verify correctness?

– Testing

– Reasoning and verification

CSE331 Fall 2014 8

10 weeks ago: Managing complexity

• Abstraction and specification

– Procedural, data, and control flow abstractions

– Why they are useful and how to use them

• Writing, understanding, and reasoning about code

– Will use Java, but the issues apply in all languages

– Some focus on object-oriented programming

• Program design and documentation

– What makes a design good or bad (example: modularity)

– Design processes and tools

• Pragmatic considerations

– Testing

– Debugging and defensive programming

– [more in CSE403: Managing software projects]

9 CSE331 Fall 2014

Some new slides to tie the pieces together…

CSE331 Fall 2014 10

Divide and conquer:

Modularity, abstraction, specs

No one person can understand all of a realistic system

• Modularity permits focusing on just one part

• Abstraction enables ignoring detail

• Specifications (and documentation) formally describe behavior

• Reasoning relies on all three to understand/fix errors

– Or avoid them in the first place

– Proving, testing, debugging: all are intellectually challenging

11 CSE331 Fall 2014

How CSE 331 fits together

12

Lectures: ideas

Specifications

Testing

Subtyping

Equality & identity

Generics

Design patterns

Reasoning, debugging

Events

Systems integration

 Assignments: get practice

 Design classes

 Write tests

 Write subclasses

 Override equals, use collections

 Write generic classes

 Larger designs; MVC

 Correctness, testing

 GUIs

 N/A

CSE331 Fall 2014

What you have learned in CSE 331

Compare your skills today to 10 weeks ago

– Theory: abstraction, specification, design

– Practice: implementation, testing

– Theory & practice: correctness

Bottom line aspiration: Much of what we’ve done would be
easy for you today

This is a measure of how much you have learned

There is no such thing as a “born” programmer!

Genius is 1% inspiration and 99% perspiration.

 Thomas A. Edison

CSE331 Fall 2014 13

What you will learn later

• Your next project can be much more ambitious

– But beware of “second system” effect

• Know your limits

– Be humble (reality helps you with this)

• You will continue to learn

– Building interesting systems is never easy

• Like any worthwhile endeavor

– Practice is a good teacher

• Requires thoughtful introspection

• Don’t learn only by trial and error!

– Voraciously consume ideas and tools

14 CSE331 Fall 2014

What comes next?

Courses

– CSE 403 Software Engineering

• Focuses more on requirements, software lifecycle,

teamwork

– Capstone projects

– Any class that requires software design and implementation

Research

– In software engineering & programming systems

– In any topic that involves software

Having an impact on the world

– Jobs (and job interviews)

– Larger programming projects

CSE331 Fall 2014 15

Last slide

• System building is fun!

– It’s even more fun when you’re successful

• Pay attention to what matters

– Take advantage of the techniques and tools you’ve learned

(and will learn!)

• On a personal note:

– Don’t be a stranger: I love to hear how you do in CSE and

beyond as alumni

• Time for “ask anything you want”?

 16 CSE331 Fall 2014

