Reasoning about code

Determine what facts are true as a program executes
– Under what assumptions

Examples:
– If \(x \) starts positive, then \(y \) is 0 when the loop finishes
– Contents of the array \(arr \) refers to are sorted
– Except at one code point, \(x + y = z \)
– For all instances of Node \(n \),
 \(n.next == null \lor n.next.prev == n \)
– …

Why do this?

• Essential complement to testing, which we will also study
 – Testing: Actual results for some actual inputs
 – Logical reasoning: Reason about whole classes of inputs/states at once ("If \(x > 0 \), …")
 • Prove a program correct (or find bugs trying)
 • Understand why code is correct
 – Stating assumptions is the essence of specification
 – “Callers must not pass \(\text{null} \) as an argument”
 – “Callee will always return an unaliased object”
 – …

Our approach

• Hoare Logic: a 1970s approach to logical reasoning about code
 – For now, consider just variables, assignments, if-statements, while-loops
 • So no objects or methods
 – This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition
 – Next lecture: Loops

Example

Forward reasoning:
– Suppose we initially know (or assume) \(w > 0 \)
 // \(w > 0 \)
 \(x = 17; \)
 // \(w > 0 \) \& \(x == 17 \)
 \(y = 42; \)
 // \(w > 0 \) \& \(x == 17 \) \& \(y == 42 \)
 \(z = w + x + y; \)
 // \(w > 0 \) \& \(x == 17 \) \& \(y == 42 \) \& \(z > 59 \)
 …
– Then we know various things after, including \(z > 59 \)

This is all essential for specifying library-interfaces, which does happen All The Time In The Real World (coming lectures)
Example

Backward reasoning:
- Suppose we want \(z \) to be negative at the end

 \[
 \begin{align*}
 & w + 17 + 42 < 0 \\
 & x = 17; \\
 & w + x + 42 < 0 \\
 & y = 42; \\
 & w + x + y < 0 \\
 & z = w + x + y; \\
 & z < 0
 \end{align*}
 \]

- Then we know initially we need to know/assume \(w < -59 \)

 • Necessary and sufficient

Forward vs. Backward, Part 1

- Forward reasoning:
 - Determine what follows from initial assumptions
 - Most useful for maintaining an invariant

- Backward reasoning
 - Determine sufficient conditions for a certain result
 - If result desired, the assumptions suffice for correctness
 - If result undesired, the assumptions suffice to trigger bug

Conditionals

\[
\begin{align*}
& \text{// initial assumptions} \\
& \text{if(...) } \{ \\
& \quad \text{... // also know test evaluated to true} \\
& \} \text{ else } \{ \\
& \quad \text{... // also know test evaluated to false} \\
& \} \\
& \text{// either branch could have executed}
\end{align*}
\]

Two key ideas:
1. The precondition for each branch includes information about the result of the test-expression
2. The overall postcondition is the disjunction ("or") of the postcondition of the branches

Example (Forward)

Assume initially \(x \geq 0 \)

\[
\begin{align*}
& \text{// } x \geq 0 \\
& z = 0; \\
& \text{// } x \geq 0 \land z = 0 \\
& \text{if}(x \neq 0) \{ \\
& \quad \text{// } x \geq 0 \land z = 0 \land x \neq 0 \text{ (so } x > 0) \\
& \quad z = x; \\
& \quad \text{// } \ldots \land z > 0 \\
& \} \text{ else } \{ \\
& \quad \text{// } x \geq 0 \land z = 0 \land !(x=0) \text{ (so } x = 0) \\
& \quad z = x + 1; \\
& \quad \text{// } \ldots \land z = 1 \\
& \} \\
& \text{// } (\ldots \land z > 0) \lor (\ldots \land z = 1) \text{ (so } z > 0)
\end{align*}
\]

Our approach

- Hoare Logic, a 1970s approach to logical reasoning about code
 - [Named after its inventor, Tony Hoare]
 - Considering just variables, assignments, if-statements, while-loops
 - So no objects or methods

- This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

- Next lecture: Loops
Some notation and terminology

- The “assumption” before some code is the **precondition**
- The “what holds after (given assumption)” is the **postcondition**
- Instead of writing pre/postconditions after //, write them in {...}
 - This is not Java
 - How Hoare logic has been written “on paper” for 40ish years
 - In pre/postconditions, = is equality, not assignment
 - Math’s “=”, which for numbers is Java’s ==

```
{ w < -59 }
x = 17;
{ w + x < -42 }
```

- Evaluating a program variable produces its contents in the state
- Can think of an assertion as representing the set of (exactly the) states for which it holds

Examples

Valid or invalid?

- (Assume all variables are integers without overflow)
 - `{x != 0} y = x*x; {y > 0}` valid
 - `{z != 1} y = z*z; {y != z}` invalid
 - `{x >= 0} y = 2*x; {y > x}` invalid
 - `{true} (if(x > 7) {y=4;} else {y=3;}) {y < 5}` valid
 - `{true} (x = y; z = x;) {y=z}`
 - `{x=7 \land y=5}
 (tmp=x; x=tmp; y=x;)
 {y=7 \land x=5}`

A Hoare Triple

- A **Hoare triple** is two assertions and one piece of code: `{P} S {Q}
 - P the precondition
 - S the code (statement)
 - Q the postcondition

- A Hoare triple `{P} S {Q}` is (by definition) valid if:
 - For all states for which P holds, executing S always
 produces a state for which Q holds
 - Less formally: If P is true before S, then Q must be true after
 - Else the Hoare triple is **invalid**

Examples

Valid or invalid?

- (Assume all variables are integers without overflow)
 - `{x != 0} y = x*x; {y > 0}
 - `{z != 1} y = z*z; {y != z}
 - `{x >= 0} y = 2*x; {y > x}
 - `{true} (if(x > 7) {y=4;} else {y=3;}) {y < 5}
 - `{true} (x = y; z = x;) {y=z}
 - `{x=7 \land y=5}
 (tmp=x; x=tmp; y=x;)
 {y=7 \land x=5}

Aside: assert in Java

- An assertion in Java is a statement with a Java expression, e.g.,

  ```java
  assert x > 0 & y < x;
  ```

- Similar to our assertions
 - Evaluate using a program state to get **true or false**
 - Uses Java syntax

- In Java, this is a run-time thing: Run the code and raise an exception if assertion is violated
 - Unless assertion-checking is disabled
 - Later course topic

- This week: we are reasoning about the code, not running it on some input
The general rules

So far: Decided if a Hoare triple was valid by using our understanding of programming constructs

Now: For each kind of construct there is a general rule

- A rule for assignment statements
- A rule for two statements in sequence
- A rule for conditionals
- [next lecture:] A rule for loops

Assignment statements

\(\{ P \} x = e; \ { Q \} \)

- Let \(Q' \) be like \(Q \) except replace every \(x \) with \(e \)
- Triple is valid if:
 - For all program states, if \(P \) holds, then \(Q' \) holds
 - That is, \(P \) implies \(Q' \), written \(P \Rightarrow Q' \)
- Example: \(\{ z > 34 \} \ y = z + 1; \ { y > 1 \} \)
 - \(Q' \) is \(\{ z + 1 > 1 \} \)

Sequences

\(\{ P \} S1; S2 \ { Q \} \)

- Triple is valid if and only if there is an assertion \(R \) such that
 - \(\{ P \} S1 \{ R \} \) is valid, and
 - \(\{ R \} S2 \{ Q \} \) is valid

- Example: \(\{ z \geq 1 \} \ y = z + 1; \ w = y * y; \ { w > y } \) (integers)
 - Let \(R \) be \(\{ y > 1 \} \)
 - Show \(\{ z \geq 1 \} \ y = z + 1; \ { y > 1 } \)
 - Use rule for assignments: \(z \geq 1 \) implies \(z + 1 > 1 \)
 - Show \(\{ y > 1 \} \ w = y * y; \ { w > y } \)
 - Use rule for assignments: \(y > 1 \) implies \(y * y > y \)

Conditionals

\(\{ P \} \text{if}(b) S1 \text{else} S2 \ { Q \} \)

- Triple is valid if and only if there are assertions \(Q1, Q2 \) such that
 - \(\{ P \land b \} S1 \{ Q1 \} \) is valid, and
 - \(\{ P \land \neg b \} S2 \{ Q2 \} \) is valid, and
 - \(Q1 \lor Q2 \) implies \(Q \)

- Example: \(\{ \text{true} \} \ (\text{if}(x > 7) y = x; \text{else} y = 20;) \ \{ y > 5 \} \)
 - Let \(Q1 \) be \(\{ y > 7 \} \) (other choices work too)
 - Let \(Q2 \) be \(\{ y = 20 \} \) (other choices work too)
 - Use assignment rule to show \(\{ \text{true} \land x > 7 \} y = x; \{ y > 7 \} \)
 - Use assignment rule to show \(\{ \text{true} \land x = 7 \} y = 20; \{ y = 20 \} \)
 - Indicate \(y > 7 \lor y = 20 \) implies \(y > 5 \)

Our approach

- Hoare Logic, a 1970s approach to logical reasoning about code
 - Considering just variables, assignments, if-statements, while-loops
 - So no objects or methods

- This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

- Next lecture: Loops

Weaker vs. Stronger

If \(P1 \) implies \(P2 \) (written \(P1 \Rightarrow P2 \)), then:

- \(P1 \) is **stronger** than \(P2 \)
- \(P2 \) is **weaker** than \(P1 \)

- Whenever \(P1 \) holds, \(P2 \) also holds
- So it is more (or at least as) “difficult” to satisfy \(P1 \)
 - The program states where \(P1 \) holds are a subset of the program states where \(P2 \) holds
- So \(P1 \) puts more constraints on program states
- So it’s a stronger set of obligations/requirements
Examples

- $x = 17$ is stronger than $x > 0$
- x is prime is neither stronger nor weaker than x is odd
- x is prime and $x > 2$ is stronger than x is odd and $x > 2$
- ...

Why this matters to us

- Suppose:
 - $(P)S(Q)$, and
 - P is weaker than some P_1, and
 - Q is stronger than some Q_1

- Then: $(P)S(Q)$ and $(P)S(Q_1)$ and $(P_1)S(Q_1)$

- Example:
 - P is $x >= 0$
 - P_1 is $x > 0$
 - S is $y = x + 1$
 - Q is $y > 0$
 - Q_1 is $y >= 0$

So...

- For backward reasoning, if we want $(P)S(Q)$, we could instead:
 - Show $(P_1)S(Q)$, and
 - Show $P \Rightarrow P_1$

- Better, we could just show $(P_2)S(Q)$ where P_2 is the weakest precondition of Q for S
 - Weakest means the most lenient assumptions such that Q will hold
 - Any precondition P such that $(P)S(Q)$ is valid will be stronger than P_2, i.e., $P \Rightarrow P_2$

- Amazing (?): Without loops/methods, for any S and Q, there exists a unique weakest precondition, written $wp(S,Q)$
 - Like our general rules with backward reasoning

Weakest preconditions

- $wp(x = e; Q)$ is Q with each x replaced by e
 - Example: $wp(x = y*y; x > 4) = y*y > 4$, i.e., $|y| > 2$

- $wp(S_1;S_2, Q)$ is $wp(S_1, wp(S_2, Q))$
 - I.e., let R be $wp(S_2, Q)$ and overall wp is $wp(S_1, R)$
 - Example: $wp(y=x+1; z=y+1; z > 2) = (x+1)+1 > 2$, i.e., $x > 0$

- $wp(if b S_1 else S_2, Q)$ is this logic formula:
 - $(b \not\rightarrow wp(S_1, Q)) \lor (!b \land wp(S_2, Q))$
 - (In any state, b will evaluate to either true or false…)
 - (You can sometimes then simplify the result)

Simple examples

- If S is $x = y*y$ and Q is $x > 4$,
 then $wp(S,Q)$ is $y*y > 4$, i.e., $|y| > 2$
- If S is $y = x + 1; z = y - 3$; and Q is $z = 10$
 then $wp(S,Q)$...
 = $wp(y = x + 1; z = y - 3; z = 10)$
 = $wp(y = x + 1; wp(z = y - 3; z = 10))$
 = $wp(y = x + 1; y-3 = 10)$
 = $wp(y = x + 1; y = 13)$
 = $x+1 = 13$
 = $x = 12$

Bigger example

- S is if $(x < 5)$ {

 } else {

 } Q is $x >= 9$

$wp(S, x >= 9)$

- $(x < 5 \land wp(x = x*x; x >= 9))$
- $v(x >= 5 \land wp(x = x+1; x >= 9))$
- $(x < 5 \land x >= 9)$
- $v(x >= 5 \land x+1 >= 9)$
- $(x <= -3) \lor (x >= 3 \land x < 5)$
- $v(x >= 0)$
If-statements review

Forward reasoning

\[
\begin{align*}
\{P\} & \quad \text{if } B \quad \{P \land B\} \quad S1 \quad \{Q1\} \\
\text{else} & \quad \{P \land \neg B\} \quad \text{else} \quad \{Q2\} \quad (Q1 \lor Q2)
\end{align*}
\]

Backward reasoning

\[
\begin{align*}
\{B \land \wp(S1, Q)\} & \quad \text{if } B \quad \wp(S1, Q) \\
\{B \land \wp(S2, Q)\} & \quad \text{else} \quad \wp(S2, Q) \quad (Q)
\end{align*}
\]

“Correct”

- If \(\wp(S, Q)\) is true, then executing \(S\) will always produce a state where \(Q\) holds
 - true holds for every program state

One more issue

- With forward reasoning, there is a problem with assignment:
 - Changing a variable can affect other assumptions

 Example:
 \[
 \begin{align*}
 \{\text{true}\} & \quad w=x+y; \\
 \{w = x + y;\} & \quad x=4; \\
 \{w = x + y \land x = 4\} & \quad y=3; \\
 \{w = x + y \land x = 4 \land y = 3\} & \quad \text{But clearly we do not know } w=7!
 \end{align*}
 \]

The fix

- When you assign to a variable, you need to replace all other uses of the variable in the post-condition with a different variable
 - So you refer to the “old contents”

 Corrected example:
 \[
 \begin{align*}
 \{\text{true}\} & \quad w=x+y; \\
 \{w = x + y;\} & \quad x=4; \\
 \{w = x1 + y \land x = 4\} & \quad y=3; \\
 \{w = x1 + y1 \land x = 4 \land y = 3\}
 \end{align*}
 \]

Useful example

- Swap contents
 - Give a name to initial contents so we can refer to them in the post-condition
 - Just in the formulas: these “names” are not in the program
 - Use these extra variables to avoid “forgetting” “connections”

 \[
 \begin{align*}
 \{x = x_{\text{pre}} \land y = y_{\text{pre}}\} & \quad \text{tmp} = x; \\
 \{x = x_{\text{pre}} \land y = y_{\text{pre}} \land \text{tmp}=x\} & \quad x = y; \\
 \{x = y \land y = y_{\text{pre}} \land \text{tmp}=x_{\text{pre}}\} & \quad \text{y} = \text{tmp}; \\
 \{x = y_{\text{pre}} \land y = \text{tmp} \land \text{tmp}=x_{\text{pre}}\}
 \end{align*}
 \]