CSE 331 Software Design & Implementation

Dan Grossman Fall 2014 Lecture 2 – Reasoning About Code With Logic

CSE 331 Fall 2014

Reasoning about code

Determine what facts are true as a program executes

- Under what assumptions

Examples:

- If \mathbf{x} starts positive, then \mathbf{y} is 0 when the loop finishes
- Contents of the array arr refers to are sorted
- Except at one code point, x + y == z
- For all instances of Node n,
- n.next == null V n.next.prev == n

-

1

3

5

CSE 331 Fall 2014

2

Why do this?

- Essential complement to testing, which we will also study
 - Testing: Actual results for some actual inputs
 - Logical reasoning: Reason about whole classes of inputs/states at once ("If x > 0, ...")
 - Prove a program correct (or find bugs trying)
 - Understand why code is correct

• Stating assumptions is the essence of specification

- "Callers must not pass null as an argument"
- "Callee will always return an unaliased object"
- ...

CSE 331 Fall 2014

Why?

- Programmers rarely "use Hoare logic" like in this lecture
 - For simple snippets of code, it's overkill
 - Gets very complicated with objects and aliasing
 - But is occasionally useful for loops with subtle invariants
 - Examples: Homework 0, Homework 2
- · Also it's an ideal setting for the right logical foundations
 - How can logic "talk about" program states?
 - How does code execution "change what is true"?
 - What do "weaker" and "stronger" mean?

This is all essential for *specifying library-interfaces*, which *does* happen All the Time in The Real World (coming lectures)

Our approach

- Hoare Logic: a 1970s approach to logical reasoning about code
 For now, consider just variables, assignments, if-statements, while-loops
 - · So no objects or methods
- This lecture: The idea, without loops, in 3 passes
 - 1. High-level intuition of forward and backward reasoning
 - 2. Precise definition of logical assertions, preconditions, etc.
 - 3. Definition of weaker/stronger and weakest-precondition
- Next lecture: Loops

CSE 331 Fall 2014

4

Example

Forward reasoning:

- Suppose we initially know (or assume) w > 0

// w > 0 x = 17; $// w > 0 \land x == 17$ y = 42; $// w > 0 \land x == 17 \land y == 42$ z = w + x + y; $// w > 0 \land x == 17 \land y == 42 \land z > 59$

- Then we know various things after, including z > 59

Example

Backward reasoning:

- Suppose we want z to be negative at the end

// w + 17 + 42 < 0 x = 17; // w + x + 42 < 0 y = 42; // w + x + y < 0 z = w + x + y; // z < 0</pre>

- Then we know initially we need to know/assume w < -59
 - · Necessary and sufficient

CSE 331 Fall 2014

Forward vs. Backward, Part 1

- · Forward reasoning:
 - Determine what follows from initial assumptions
 - Most useful for maintaining an invariant
- Backward reasoning
 - Determine sufficient conditions for a certain result
 - If result desired, the assumptions suffice for correctness
 - If result undesired, the assumptions suffice to trigger bug

CSE 331 Fall 2014

8

Forward vs. Backward, Part 2

- Forward reasoning:
 - Simulates the code (for many "inputs" "at once")
 - Often more intuitive
 - But introduces [many] facts irrelevant to a goal
- Backward reasoning
 - Often more useful: Understand what each part of the code contributes toward the goal
 - "Thinking backwards" takes practice but gives you a powerful new way to reason about programs

CSE 331 Fall 2014

Example (Forward)

```
Assume initially x \ge 0

// x \ge 0

z = 0;

// x \ge 0 \land z == 0

if (x != 0) \{

// x \ge 0 \land z == 0 \land x != 0 \text{ (so } x > 0)

z = x;

// ... \land z \ge 0

} else {

// x \ge 0 \land z == 0 \land ! (x!=0) \text{ (so } x == 0)

z = x + 1;

// ... \land z == 1

}

// (... \land z \ge 0) \lor (... \land z == 1) \text{ (so } z \ge 0)
```

CSE 331 Fall 2014

Conditionals

7

9

11

// initial assumptions
if(...) {
 // also know test evaluated to true
} else {
 // also know test evaluated to false
}
// either branch could have executed
Two key ideas:

- 1. The precondition for each branch includes information about the result of the test-expression
- 2. The overall postcondition is the disjunction ("or") of the postcondition of the branches

CSE 331 Fall 2014

Our approach

- Hoare Logic, a 1970s approach to logical reasoning about code

 [Named after its inventor, Tony Hoare]
 - Considering just variables, assignments, if-statements, while-loops
 - · So no objects or methods
- · This lecture: The idea, without loops, in 3 passes
 - 1. High-level intuition of forward and backward reasoning
 - 2. Precise definition of logical assertions, preconditions, etc.
 - 3. Definition of weaker/stronger and weakest-precondition
- Next lecture: Loops

Some notation and terminology

- The "assumption" before some code is the precondition
- The "what holds after (given assumption)" is the postcondition
- Instead of writing pre/postconditions after //, write them in {...} – This is not Java
 - How Hoare logic has been written "on paper" for 40ish years

{ w < -59 } x = 17;{ w + x < -42 }

In pre/postconditions, = is equality, not assignment
 Math's "=", which for numbers is Java's ==

$$\{ w > 0 \land x = 17 \}$$

y = 42;{ w > 0 $\land x = 17$ $\land y = 42$ } CSE 331 Fall 2014

A Hoare Triple

A Hoare triple is two assertions and one piece of code:

 $\{P\} S \{Q\}$

- P the precondition
- S the code (statement)
- Q the postcondition
- A Hoare triple {P} S {Q} is (by definition) valid if:
 - For all states for which *P* holds, executing *S* always produces a state for which *Q* holds
 - Less formally: If P is true before S, then Q must be true after
 - Else the Hoare triple is invalid

CSE 331 Fall 2014

Examples

Valid or invalid?

 – (Assume all variables are integ 	gers without overflow)
---	------------------------

•	{x}	! =	0}	У	= :	x*x;	{у	>	0}	valid	
---	-----	-----	----	---	-----	------	----	---	----	-------	--

- {z != 1} y = z*z; {y != z} invalid
- $\{x \ge 0\} y = 2*x; \{y \ge x\}$ invalid
- {true} (if(x > 7) {y=4;} else {y=3;}) {y < 5} valid

CSE 331 Fall 2014

• {true} (x = y; z = x;) {y=z} valid

• {x=7 \lambda y=5} invalid
 (tmp=x; x=tmp; y=x;)
 {y=7 \lambda x=5}

What an assertion means

- An assertion (pre/postcondition) is a logical formula that can refer to program state (e.g., contents of variables)
- A *program state* is something that "given" a variable can "tell you" its contents
 - Or any expression that has no side-effects
- An assertion *holds* for a program state, if evaluating using the program state produces *true*
 - Evaluating a program variable produces its contents in the state
 - Can think of an assertion as representing the set of (exactly the) states for which it holds
 - CSE 331 Fall 2014

14

Examples

13

15

17

Valid or invalid?

- (Assume all variables are integers without overflow)
- $\{x \mid = 0\} \ y = x^*x; \ \{y > 0\}$
- {z != 1} y = z * z; {y != z}
- $\{x \ge 0\} y = 2*x; \{y \ge x\}$
- {true} (if (x > 7) {y=4;} else {y=3;}) {y < 5}
- {true} (x = y; z = x;) {y=z}
- {x=7 \lambda y=5}
 (tmp=x; x=tmp; y=x;)
 {y=7 \lambda x=5}
 - CSE 331 Fall 2014

16

Aside: assert in Java

- An assertion in Java is a statement with a Java expression, e.g., assert x > 0 && y < x;
- Similar to our assertions
 - Evaluate using a program state to get true or false
 - Uses Java syntax
- In Java, this is a run-time thing: Run the code and raise an exception if assertion is violated
 - Unless assertion-checking is disabled
 - Later course topic
- This week: we are reasoning about the code, not running it on some input

The general rules $\{P\} x = e; \{Q\}$ So far: Decided if a Hoare triple was valid by using our understanding of programming constructs Let Q' be like Q except replace every x with e Now: For each kind of construct there is a general rule · Triple is valid if: - A rule for assignment statements For all program states, if P holds, then Q' holds - A rule for two statements in sequence - That is, P implies Q', written P => Q' A rule for conditionals - [next lecture:] A rule for loops • Example: {z > 34} y=z+1; {y > 1} - ... -Q' is {z+1 > 1} CSE 331 Fall 2014 19 CSE 331 Fall 2014

Sequences

{P} S1;S2 {Q}

- Triple is valid if and only if there is an assertion R such that
 - {P}S1{R} is valid, and
 - {R}S2{Q} is valid
- Example: $\{z \ge 1\}$ y=z+1; w=y*y; $\{w > y\}$ (integers) - Let \mathbb{R} be $\{y > 1\}$
 - Show $\{z \ge 1\}$ $y=z+1; \{y \ge 1\}$
 - Use rule for assignments: $z \ge 1$ implies $z+1 \ge 1$
 - Show $\{y > 1\}$ w=y*y; $\{w > y\}$
 - Use rule for assignments: y > 1 implies y*y > y

CSE 331 Fall 2014

Our approach

- Hoare Logic, a 1970s approach to logical reasoning about code - Considering just variables, assignments, if-statements,
 - while-loops · So no objects or methods
- This lecture: The idea, without loops, in 3 passes
 - 1. High-level intuition of forward and backward reasoning
 - 2. Precise definition of logical assertions, preconditions, etc.
 - 3. Definition of weaker/stronger and weakest-precondition
- Next lecture: Loops

Conditionals

{P} if(b) S1 else S2 {Q}

- Triple is valid if and only if there are assertions Q1, Q2 such that
 - {P A b}S1{Q1} is valid, and
 - {P A !b}S2{Q2} is valid, and
 - Q1 V Q2 implies Q
- Example: {true} (if(x > 7) y=x; else y=20;) {y > 5}
 - Let Q1 be $\{y > 7\}$ (other choices work too)
 - Let Q2 be {y = 20} (other choices work too)
 - Use assignment rule to show {true $\Lambda x > 7$ }y=x; {y>7}
 - Use assignment rule to show {true $\Lambda x \le 7$ }y=20; {y=20}
 - Indicate y>7 V y=20 implies y>5

CSE 331 Fall 2014

22

20

Weaker vs. Stronger

If P1 implies P2 (written P1 => P2), then:

- P1 is stronger than P2
- P2 is weaker than P1
- · Whenever P1 holds, P2 also holds
- So it is more (or at least as) "difficult" to satisfy P1 - The program states where P1 holds are a subset of the
- program states where P2 holds
- · So P1 puts more constraints on program states
- · So it's a stronger set of obligations/requirements

21

Assignment statements

Examples

 {P}S{Q}, and P is weaker than some P1, and Q is stronger than some Q1
 Q is stronger than some Q1
 Then: {P1}S{Q} and {P}S{Q1} and {P1}S{Q1}
Example:
$-\mathbf{P}$ is $\mathbf{x} \ge 0$
$- \mathbf{P1} \text{ is } \mathbf{x} > 0$
-S is y = x+1
-
$-Q$ is $\gamma > 0$
- Q1 is y >= 0

So...

- For backward reasoning, if we want {P}S{Q}, we could instead:
 Show {P1}S{Q}, and
 - Show P => P1
- Better, we could just show {P2}S{Q} where P2 is the weakest precondition of Q for S
 - Weakest means the most lenient assumptions such that $\ensuremath{\underline{\textbf{Q}}}$ will hold
 - Any precondition P such that {P}S{Q} is valid will be stronger than P2, i.e., P => P2
- Amazing (?): Without loops/methods, for any s and Q, there exists a unique weakest precondition, written wp(s,Q)
 - Like our general rules with backward reasoning

CSE 331 Fall 2014

Simple examples

 If S is x = y*y and Q is x > 4, then wp(S,Q) is y*y > 4, i.e., |y| > 2

If S is y = x + 1; z = y - 3; and Q is z = 10, then wp(S,Q) ...
= wp(y = x + 1; z = y - 3; z = 10)
= wp(y = x + 1; wp(z = y - 3; z = 10))
= wp(y = x + 1; y^{-3} = 10)
= wp(y = x + 1; y = 13)
= x+1 = 13
= x = 12

Weakest preconditions

Why this matters to us

- wp(x = e;, Q) is Q with each x replaced by e
 Example: wp(x = y*y;, x > 4) = y*y > 4, i.e., |y| > 2
- wp(S1;S2,Q) is wp(S1,wp(S2,Q))
 I.e., let R be wp(S2,Q) and overall wp is wp(S1,R)
 - Example: wp((y=x+1; z=y+1;), z > 2) =
 (x + 1)+1 > 2, i.e., x > 0
- wp(if b S1 else S2, Q) is this logic formula:
 (b A wp(S1,Q)) V (!b A wp(S2,Q))
 - (In any state, b will evaluate to either true or false...)
 - You can sometimes then simplify the result)

CSE 331 Fall 2014

28

Bigger example

```
S is if (x < 5) {
                \mathbf{x} = \mathbf{x} \mathbf{x};
             } else {
                x = x+1;
             }
    Q is x >= 9
wp(S, x \ge 9)
    = (\mathbf{x} < 5 \land wp(\mathbf{x} = \mathbf{x} \star \mathbf{x};, \mathbf{x} \geq 9))
      \vee (x >= 5 \wedge wp(x = x+1; x >= 9))
    = (x < 5 \land x x >= 9)
       \vee (x >= 5 \wedge x+1 >= 9)
     = (\mathbf{x} <= -3) \lor (\mathbf{x} >= 3 \land \mathbf{x} < 5)
        \vee (x \geq 8)
                                    -4-3-2-10123456789
                                 CSE 331 Fall 2014
                                                                              30
```

CSE 331 Fall 2014

27

If-statements review

Forward reasoning	Backward reasoning	
<pre>{P} if B {P ∧ B} S1 {Q1} else {P ∧ !B} S2 {Q2} {Q1 ∨ Q2}</pre>	<pre>{ (B \wp(S1, Q))</pre>	
	{Q}	
	CSE 331 Fall 2014	31

"Correct"

- If wp(S,Q) is true, then executing S will always produce a state where Q holds
 - true holds for every program state

One more issue

- With forward reasoning, there is a problem with assignment:
 Changing a variable can affect other assumptions
- · Example:

{true} w=x+y;{w = x + y;} x=4;{ $w = x + y \land x = 4$ } y=3;{ $w = x + y \land x = 4 \land y = 3$ } But clearly we do not know w=7!

CSE 331 Fall 2014

33

35

The fix

 When you assign to a variable, you need to replace all other uses of the variable in the post-condition with a different variable
 So you refer to the "old contents"

CSE 331 Fall 2014

Corrected example:

{true}
w=x+y;
{w = x + y;}
x=4;
{w = x1 + y \land x = 4}
y=3;
{w = x1 + y1 \land x = 4 \land y = 3}

CSE 331 Fall 2014

34

32

Useful example

- Swap contents
 - Give a name to initial contents so we can refer to them in the post-condition
 - Just in the formulas: these "names" are not in the program
 - Use these extra variables to avoid "forgetting" "connections"

{x = x_pre \ y = y_pre} tmp = x; {x = x_pre \ y = y_pre \ tmp=x} x = y; {x = y \ y = y_pre \ tmp=x_pre} y = tmp; {x = y_pre \ y = tmp \ tmp=x_pre}