CSE 331
Software Design & Implementation

Dan Grossman
Fall 2014
Lecture 2 – Reasoning About Code With Logic
Reasoning about code

Determine what facts are true as a program executes
 – Under what assumptions

Examples:
 – If \(x \) starts positive, then \(y \) is 0 when the loop finishes
 – Contents of the array \(arr \) refers to are sorted
 – Except at one code point, \(x + y = z \)
 – For all instances of Node \(n \),
 \[n.next == \text{null} \lor n.next.prev == n \]
 – …
Why do this?

• Essential complement to testing, which we will also study
 – Testing: Actual results for some actual inputs
 – Logical reasoning: Reason about whole classes of inputs/states at once (“If $x > 0$, …”)
 • Prove a program correct (or find bugs trying)
 • Understand why code is correct

• Stating assumptions is the essence of specification
 – “Callers must not pass null as an argument”
 – “Callee will always return an unaliased object”
 – …
Our approach

• Hoare Logic: a 1970s approach to logical reasoning about code
 – For now, consider just variables, assignments, if-statements, while-loops
 • So no objects or methods

• This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

• Next lecture: Loops
Why?

• Programmers rarely “use Hoare logic” like in this lecture
 – For simple snippets of code, it’s overkill
 – Gets very complicated with objects and aliasing
 – But is occasionally useful for loops with subtle invariants
 • Examples: Homework 0, Homework 2

• Also it’s an ideal setting for the right logical foundations
 – How can logic “talk about” program states?
 – How does code execution “change what is true”?
 – What do “weaker” and “stronger” mean?

This is all essential for specifying library-interfaces, which does happen All the Time in The Real World (coming lectures)
Example

Forward reasoning:
- Suppose we initially know (or assume) \(w > 0 \)

 \[
 \begin{align*}
 &\text{// } w > 0 \\
 &x = 17; \\
 &\text{// } w > 0 \land x == 17 \\
 &y = 42; \\
 &\text{// } w > 0 \land x == 17 \land y == 42 \\
 &z = w + x + y; \\
 &\text{// } w > 0 \land x == 17 \land y == 42 \land z > 59 \\
 \end{align*}
 \]
 ...

- Then we know various things after, including \(z > 59 \)
Example

Backward reasoning:
- Suppose we want z to be negative at the end

  ```
  // w + 17 + 42 < 0
  x = 17;
  // w + x + 42 < 0
  y = 42;
  // w + x + y < 0
  z = w + x + y;
  // z < 0
  ```

- Then we know initially we need to know/assume $w < -59$
 - Necessary and sufficient
Forward vs. Backward, Part 1

• Forward reasoning:
 – Determine what follows from initial assumptions
 – Most useful for maintaining an invariant

• Backward reasoning
 – Determine sufficient conditions for a certain result
 • If result desired, the assumptions suffice for correctness
 • If result undesired, the assumptions suffice to trigger bug
Forward vs. Backward, Part 2

- Forward reasoning:
 - Simulates the code (for many “inputs” “at once”)
 - Often more intuitive
 - But introduces [many] facts irrelevant to a goal

- Backward reasoning
 - Often more useful: Understand what each part of the code contributes toward the goal
 - “Thinking backwards” takes practice but gives you a powerful new way to reason about programs
Conditionals

// initial assumptions
if(...) {
 ... // also know test evaluated to true
} else {
 ... // also know test evaluated to false
}
// either branch could have executed

Two key ideas:

1. The precondition for each branch includes information about the result of the test-expression
2. The overall postcondition is the disjunction (“or”) of the postcondition of the branches
Example (Forward)

Assume initially $x \geq 0$

```c
// x >= 0
z = 0;
// x >= 0 ∧ z == 0
if(x != 0) {
  // x >= 0 ∧ z == 0 ∧ x != 0 (so x > 0)
  z = x;
  // ... ∧ z > 0
} else {
  // x >= 0 ∧ z == 0 ∧ !(x!=0) (so x == 0)
  z = x + 1;
  // ... ∧ z == 1
}
// ( ... ∧ z > 0) ∨ (... ∧ z == 1) (so z > 0)
```
Our approach

• Hoare Logic, a 1970s approach to logical reasoning about code
 – [Named after its inventor, Tony Hoare]
 – Considering just variables, assignments, if-statements, while-loops
 • So no objects or methods

• This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

• Next lecture: Loops
Some notation and terminology

- The “assumption” before some code is the **precondition**
- The “what holds after (given assumption)” is the **postcondition**

- Instead of writing pre/postconditions after `//`, write them in `{...}`
 - This is not Java
 - How Hoare logic has been written “on paper” for 40ish years

 `{ w < -59 } x = 17; { w + x < -42 }`

 - In pre/postconditions, `=` is equality, not assignment
 - Math’s “=”, which for numbers is Java’s `==`

 `{ w > 0 ∧ x = 17 } y = 42; { w > 0 ∧ x = 17 ∧ y = 42 }`
What an assertion means

- An assertion (pre/postcondition) is a logical formula that can refer to program state (e.g., contents of variables)

- A program state is something that “given” a variable can “tell you” its contents
 - Or any expression that has no side-effects

- An assertion holds for a program state, if evaluating using the program state produces true
 - Evaluating a program variable produces its contents in the state
 - Can think of an assertion as representing the set of (exactly the) states for which it holds
A Hoare Triple

• A Hoare triple is two assertions and one piece of code:
 \[\{ P \} \; S \; \{ Q \} \]
 – \(P \) the precondition
 – \(S \) the code (statement)
 – \(Q \) the postcondition

• A Hoare triple \(\{ P \} \; S \; \{ Q \} \) is (by definition) valid if:
 – For all states for which \(P \) holds, executing \(S \) always produces a state for which \(Q \) holds
 – Less formally: If \(P \) is true before \(S \), then \(Q \) must be true after
 – Else the Hoare triple is invalid
Examples

Valid or invalid?

– (Assume all variables are integers without overflow)

• \{x \neq 0\} y = x*x; \{y > 0\}
• \{z \neq 1\} y = z*z; \{y \neq z\}
• \{x \geq 0\} y = 2*x; \{y > x\}
• \{true\} (if(x > 7) \{y=4;\} else \{y=3;\}) \{y < 5\}
• \{true\} (x = y; z = x;) \{y=z\}
• \{x=7 \land y=5\}
 (tmp=x; x=tmp; y=x;)
 \{y=7 \land x=5\}
Examples

Valid or invalid?

- (Assume all variables are integers without overflow)

• \{x \neq 0\} y = x*x; \{y > 0\} valid
• \{z \neq 1\} y = z*z; \{y \neq z\} invalid
• \{x \geq 0\} y = 2*x; \{y > x\} invalid
• \{true\} (if(x > 7) {y=4;} else {y=3;}) \{y < 5\} valid
• \{true\} (x = y; z = x;) \{y=z\} valid
• \{x=7 \land y=5\} invalid
 (tmp=x; x=tmp; y=x;)
 \{y=7 \land x=5\}
Aside: assert in Java

• An assertion in Java is a statement with a Java expression, e.g.,
 \texttt{assert } x > 0 \texttt{ && y < x};

• Similar to our assertions
 – Evaluate using a program state to get \texttt{true} or \texttt{false}
 – Uses Java syntax

• In Java, this is a \texttt{run-time thing}: Run the code and raise an exception if assertion is violated
 – Unless assertion-checking is disabled
 – Later course topic

• This week: we are reasoning about the code, not running it on some input
The general rules

• So far: Decided if a Hoare triple was valid by using our understanding of programming constructs

• Now: For each kind of construct there is a general rule
 – A rule for assignment statements
 – A rule for two statements in sequence
 – A rule for conditionals
 – [next lecture:] A rule for loops
 – …
Assignment statements

\{ P \} \ x = e; \ { Q \}

- Let \(Q' \) be like \(Q \) except replace every \(x \) with \(e \)
- Triple is valid if:
 - For all program states, if \(P \) holds, then \(Q' \) holds
 - That is, \(P \) implies \(Q' \), written \(P \Rightarrow Q' \)

- Example: \(\{ z > 34 \} \ y = z + 1; \ \{ y > 1 \} \)
 - \(Q' \) is \(\{ z+1 > 1 \} \)
Sequences

\{P\} \ S1;S2 \ \{Q\}

• Triple is valid if and only if there is an assertion \(R\) such that
 - \{P\}S1{R} is valid, and
 - \{R\}S2{Q} is valid

• Example: \{z \geq 1\} y=z+1; w=y*y; \{w > y\} (integers)
 - Let \(R\) be \{y > 1\}
 - Show \{z \geq 1\} y=z+1; \{y > 1\}
 - Use rule for assignments: \(z \geq 1\) implies \(z+1 > 1\)
 - Show \{y > 1\} w=y*y; \{w > y\}
 - Use rule for assignments: \(y > 1\) implies \(y*y > y\)
Conditionals

\{P\} \text{ if}(b) \ S1 \ \text{else} \ S2 \ \{Q\}

• Triple is valid if and only if there are assertions \(Q1, Q2\) such that
 - \(\{P \land b\} S1 \{Q1\}\) is valid, and
 - \(\{P \land \neg b\} S2 \{Q2\}\) is valid, and
 - \(Q1 \lor Q2\) implies \(Q\)

• Example: \{true\} \ (if(x > 7) \ y=x; \ else \ y=20;) \ {y > 5}\n - Let \(Q1\) be \{y > 7\} (other choices work too)
 - Let \(Q2\) be \{y = 20\} (other choices work too)
 - Use assignment rule to show \{true \land x > 7\}y=x;\{y>7\}
 - Use assignment rule to show \{true \land x \leq 7\}y=20;\{y=20\}
 - Indicate \(y>7 \lor y=20\) implies \(y>5\)
Our approach

• Hoare Logic, a 1970s approach to logical reasoning about code
 – Considering just variables, assignments, if-statements, while-loops
 • So no objects or methods

• This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

• Next lecture: Loops
Weaker vs. Stronger

If P_1 implies P_2 (written $P_1 \Rightarrow P_2$), then:
- P_1 is stronger than P_2
- P_2 is weaker than P_1

- Whenever P_1 holds, P_2 also holds
- So it is more (or at least as) “difficult” to satisfy P_1
 - The program states where P_1 holds are a subset of the program states where P_2 holds
- So P_1 puts more constraints on program states
- So it’s a stronger set of obligations/requirements
Examples

• $x = 17$ is stronger than $x > 0$

• x is prime is neither stronger nor weaker than x is odd

• x is prime and $x > 2$ is stronger than x is odd and $x > 2$

• ...
Why this matters to us

• Suppose:
 – \(\{P\}S\{Q\} \), and
 – \(P \) is weaker than some \(P_1 \), and
 – \(Q \) is stronger than some \(Q_1 \)

• Then: \(\{P_1\}S\{Q\} \) and \(\{P\}S\{Q_1\} \) and \(\{P_1\}S\{Q_1\} \)

• Example:
 – \(P \) is \(x \geq 0 \)
 – \(P_1 \) is \(x > 0 \)
 – \(S \) is \(y = x+1 \)
 – \(Q \) is \(y > 0 \)
 – \(Q_1 \) is \(y \geq 0 \)
So...

- For backward reasoning, if we want $\{P\}S\{Q\}$, we could instead:
 - Show $\{P_1\}S\{Q\}$, and
 - Show $P \Rightarrow P_1$

- Better, we could just show $\{P_2\}S\{Q\}$ where P_2 is the weakest precondition of Q for S
 - Weakest means the most lenient assumptions such that Q will hold
 - Any precondition P such that $\{P\}S\{Q\}$ is valid will be stronger than P_2, i.e., $P \Rightarrow P_2$

- Amazing (?): Without loops/methods, for any S and Q, there exists a unique weakest precondition, written $wp(S,Q)$
 - Like our general rules with backward reasoning
Weakest preconditions

• \(wp(x = e; , Q)\) is \(Q\) with each \(x\) replaced by \(e\)
 - Example: \(wp(x = y*y; , x > 4) = y*y > 4, \) i.e., \(|y| > 2\)

• \(wp(S1;S2, Q)\) is \(wp(S1,wp(S2,Q))\)
 - I.e., let \(R\) be \(wp(S2,Q)\) and overall \(wp\) is \(wp(S1,R)\)
 - Example: \(wp((y=x+1; z=y+1;), z > 2) = (x + 1)+1 > 2, \) i.e., \(x > 0\)

• \(wp(if b S1 else S2, Q)\) is this logic formula:
 \((b \land wp(S1,Q)) \lor (!b \land wp(S2,Q))\)
 - (In any state, \(b\) will evaluate to either true or false...)
 - (You can sometimes then simplify the result)
Simple examples

- If S is $x = y \cdot y$ and Q is $x > 4$, then $\text{wp}(S, Q)$ is $y \cdot y > 4$, i.e., $|y| > 2$

- If S is $y = x + 1; z = y - 3;$ and Q is $z = 10$, then $\text{wp}(S, Q)$...

 $= \text{wp}(y = x + 1; z = y - 3;, z = 10)$
 $= \text{wp}(y = x + 1;, \text{wp}(z = y - 3;, z = 10))$
 $= \text{wp}(y = x + 1;, y - 3 = 10)$
 $= \text{wp}(y = x + 1;, y = 13)$
 $= x + 1 = 13$
 $= x = 12$
Bigger example

S is if (x < 5) {
 x = x*x;
} else {
 x = x+1;
}
Q is x >= 9

wp(S, x >= 9)
= (x < 5 ∧ wp(x = x*x;, x >= 9))
 ∨ (x >= 5 ∧ wp(x = x+1;, x >= 9))
= (x < 5 ∧ x*x >= 9)
 ∨ (x >= 5 ∧ x+1 >= 9)
= (x <= -3) ∨ (x >= 3 ∧ x < 5)
 ∨ (x >= 8)
If-statements review

Forward reasoning

\{P\}
\textbf{if \ B}
\\{P \land B\}
S1
\{Q1\}
\textbf{else}
\\{P \land \neg B\}
S2
\{Q2\}
\{Q1 \lor Q2\}

Backward reasoning

\{ (B \land \text{wp}(S1, Q)) \lor (\neg B \land \text{wp}(S2, Q)) \}
\textbf{if \ B}
\ \{\text{wp}(S1, Q)\}
S1
\{Q\}
\textbf{else}
\ \{\text{wp}(S2, Q)\}
S2
\{Q\}
\{Q\}
“Correct”

• If \(\text{wp}(S, Q) \) is true, then executing \(S \) will always produce a state where \(Q \) holds
 – true holds for every program state
One more issue

- With forward reasoning, there is a problem with assignment:
 - Changing a variable can affect other assumptions

Example:

```plaintext
{true}
w = x + y;
{w = x + y;}
x = 4;
{w = x + y ∧ x = 4}
y = 3;
{w = x + y ∧ x = 4 ∧ y = 3}
But clearly we do not know w = 7!
```
The fix

• When you assign to a variable, you need to replace all other uses of the variable in the post-condition with a different variable
 – So you refer to the "old contents"

• Corrected example:

```plaintext
{true}
w=x+y;
{w = x + y;}
x=4;
{w = x1 + y ∧ x = 4}
y=3;
{w = x1 + y1 ∧ x = 4 ∧ y = 3}
```
Useful example

• Swap contents
 – Give a name to initial contents so we can refer to them in the post-condition
 – Just in the formulas: these “names” are not in the program
 – Use these extra variables to avoid “forgetting” “connections”

\[
\begin{align*}
{x = x_{\text{pre}} \land y = y_{\text{pre}}} \\
tmp = x; \\
{x = x_{\text{pre}} \land y = y_{\text{pre}} \land tmp=x} \\
x = y; \\
{x = y \land y = y_{\text{pre}} \land tmp=x_{\text{pre}}} \\
y = tmp; \\
{x = y_{\text{pre}} \land y = tmp \land tmp=x_{\text{pre}}}
\end{align*}
\]