
CSE 331
Software Design & Implementation

Dan Grossman
Fall 2014

Subtypes and Subclasses
(Based on slides by Mike Ernst, David Notkin, Hal Perkins)

What is subtyping?

Sometimes “every B is an A”
– Example: In a library database:

• Every book is a library holding
• Every CD is a library holding

Subtyping expresses this

– “B is a subtype of A” means:
 “every object that satisfies the rules for a B
 also satisfies the rules for an A”

Goal: code written using A's specification operates correctly even if
given a B

– Plus: clarify design, share tests, (sometimes) share code

2

LibraryHolding

Book CD

A

B

Shape

Circle Rhombus

CSE331 Fall 2014

Subtypes are substitutable

Subtypes are substitutable for supertypes
– Instances of subtype won't surprise client by failing to satisfy

the supertype's specification
– Instances of subtype won't surprise client by having more

expectations than the supertype's specification

We say that B is a true subtype of A if B has a stronger
specification than A

– This is not the same as a Java subtype
– Java subtypes that are not true subtypes are confusing and

dangerous
• But unfortunately common poor-design �

3 CSE331 Fall 2014

Subtyping vs. subclassing

Substitution (subtype) — a specification notion
– B is a subtype of A iff an object of B can masquerade as an

object of A in any context
– About satisfiability (behavior of a B is a subset of A’s spec)

Inheritance (subclass) — an implementation notion
– Factor out repeated code
– To create a new class, write only the differences

Java purposely merges these notions for classes:

– Every subclass is a Java subtype
• But not necessarily a true subtype

4 CSE331 Fall 2014

Inheritance makes adding functionality easy

Suppose we run a web store with a class for products…

class Product {
 private String title;
 private String description;
 private int price; // in cents
 public int getPrice() {
 return price;
 }
 public int getTax() {
 return (int)(getPrice() * 0.095f);
 }
 ...
}

... and we need a class for products that are on sale
5 CSE331 Fall 2014

We know: don’t copy code!

We would never dream of cutting and pasting like this:

class SaleProduct {
 private String title;
 private String description;
 private int price; // in cents
 private float factor;
 public int getPrice() {
 return (int)(price*factor);
 }
 public float getTax() {

 return getPrice() * .095;
 }
 …
}

6 CSE331 Fall 2014

Inheritance makes small extensions small

Much better:

class SaleProduct extends Product {
 private float factor;
 public int getPrice() {
 return (int)(super.getPrice()*factor);
 }
}

7 CSE331 Fall 2014

Benefits of subclassing & inheritance

• Don’t repeat unchanged fields and methods
– In implementation

• Simpler maintenance: fix bugs once
– In specification

• Clients who understand the superclass specification need
only study novel parts of the subclass

– Modularity: can ignore private fields and methods of
superclass (if properly defined)

– Differences not buried under mass of similarities

• Ability to substitute new implementations
– No client code changes required to use new subclasses

8 CSE331 Fall 2014

Subclassing can be misused

• Poor planning can lead to a muddled class hierarchy
– Relationships may not match untutored intuition

• Poor design can produce subclasses that depend on many
implementation details of superclasses

• Changes in superclasses can break subclasses
– “fragile base class problem”

• Subtyping and implementation inheritance are orthogonal!
– Subclassing gives you both
– Sometimes you want just one

• Interfaces: subtyping without inheritance [see also section]
• Composition: use implementation without subtyping

– Can seem less convenient, but often better long-term

9 CSE331 Fall 2014

Is every square a rectangle?

interface Rectangle {
 // effects: fits shape to given size:
 // thispost.width = w, thispost.height = h
 void setSize(int w, int h);
}
interface Square extends Rectangle {…}

Which is the best option for Square’s setSize specification?
1. // requires: w = h
 // effects: fits shape to given size
void setSize(int w, int h);

2.// effects: sets all edges to given size
void setSize(int edgeLength);

3.// effects: sets this.width and this.height to w
void setSize(int w, int h);

4. // effects: fits shape to given size
 // throws BadSizeException if w != h
void setSize(int w, int h) throws BadSizeException;
 10 CSE331 Fall 2014

Square, Rectangle Unrelated (Subtypes)

Square not a (true subtype of) Rectangle:
– Rectangles are expected to have a width and height

that can be mutated independently
– Squares violate that expectation, could surprise client

Rectangle not a (true subtype of) Square:
– Squares are expected to have equal widths and heights
– Rectangles violate that expectation, could surprise client

Subtyping not always intuitive
– Benefit: it forces clear thinking and prevents errors

Solutions:
– Make them unrelated (or siblings)
– Make them immutable (!)

• Recovers elementary-school intuition

11 CSE331 Fall 2014

Inappropriate subtyping in the JDK
 class Hashtable<K,V> {
 public void put(K key, V value){…}
 public V get(K key){…}
 }

 // Keys and values are strings.
 class Properties extends Hashtable<Object,Object> {
 public void setProperty(String key, String val) {
 put(key,val);
 }
 public String getProperty(String key) {
 return (String)get(key);
 }
 }

12 CSE331 Fall 2014

Properties p = new Properties();
Hashtable tbl = p;
tbl.put("One", 1);
p.getProperty("One"); // crash!

Violation of rep invariant

Properties class has a simple rep invariant:
– Keys and values are Strings

But client can treat Properties as a Hashtable

– Can put in arbitrary content, break rep invariant

From Javadoc:

Because Properties inherits from Hashtable, the put and putAll
methods can be applied to a Properties object. ... If the store or
save method is called on a "compromised" Properties object
that contains a non-String key or value, the call will fail.

13 CSE331 Fall 2014

Solution 1: Generics

Bad choice:
class Properties extends Hashtable<Object,Object> {

…
}

Better choice:
class Properties extends Hashtable<String,String> {

…
}

JDK designers deliberately didn’t do this. Why?

– Backward-compatibility (Java didn’t used to have generics)
– Postpone talking about generics: upcoming lecture

14 CSE331 Fall 2014

Solution 2: Composition

class Properties {
 private Hashtable<Object, Object> hashtable;

 public void setProperty(String key, String value) {
 hashtable.put(key,value);
 }

 public String getProperty(String key) {
 return (String) hashtable.get(key);
 }

 …
}

15 CSE331 Fall 2014

Substitution principle for classes

If B is a subtype of A, a B can always be substituted for an A

Any property guaranteed by A must be guaranteed by B
– Anything provable about an A is provable about a B
– If an instance of subtype is treated purely as supertype (only

supertype methods/fields used), then the result should be
consistent with an object of the supertype being manipulated

B is permitted to strengthen properties and add properties
– Fine to add new methods (that preserve invariants)
– An overriding method must have a stronger (or equal) spec

B is not permitted to weaken a spec
– No method removal
– No overriding method with a weaker spec

16 CSE331 Fall 2014

Substitution principle for methods

Constraints on methods
– For each supertype method, subtype must have such a method

• Could be inherited or overridden

Each overriding method must strengthen (or match) the spec:

– Ask nothing extra of client (“weaker precondition”)
• Requires clause is at most as strict as in supertype’s method

– Guarantee at least as much (“stronger postcondition”)
• Effects clause is at least as strict as in the supertype method
• No new entries in modifies clause
• Promise more (or the same) in returns clause
• Throws clause must indicate fewer (or same) possible

exception types

17 CSE331 Fall 2014

Spec strengthening: argument/result types

Method inputs:
– Argument types in A’s foo may be

replaced with supertypes in B’s foo
(“contravariance”)

– Places no extra demand on the clients
– But Java does not have such overriding

• (Why?)
Method results:

– Result type of A’s foo may be replaced by
a subtype in B’s foo (“covariance”)

– No new exceptions (for values in the domain)
– Existing exceptions can be replaced with subtypes

 (None of this violates what client can rely on)

18

LibraryHolding

Book CD

A

B

Shape

Circle Rhombus

CSE331 Fall 2014

Substitution exercise

Suppose we have a method which, when given one product,
recommends another:
 class Product {

 Product recommend(Product ref);
 }
Which of these are possible forms of this method in SaleProduct
(a true subtype of Product)?
 Product recommend(SaleProduct ref);
 SaleProduct recommend(Product ref);
 Product recommend(Object ref);

 Product recommend(Product ref)

 throws NoSaleException;

// OK

// OK, but is Java
 overloading

// bad

// bad

19 CSE331 Fall 2014

Java subtyping

• Java types:
– Defined by classes, interfaces, primitives

• Java subtyping stems from B extends A and

B implements A declarations

• In a Java subtype, each corresponding method has:
– Same argument types

• If different, overloading: unrelated methods
– Compatible (covariant) return types

• A (somewhat) recent language feature, not reflected in
(e.g.) clone

– No additional declared exceptions

20 CSE331 Fall 2014

Java subtyping guarantees

A variable’s run-time type (i.e., the class of its run-time value) is a
Java subtype of its declared type

Object o = new Date(); // OK
Date d = new Object(); // compile-time error
If a variable of declared (compile-time) type T1 holds a
reference to an object of actual (runtime) type T2, then T2 must
be a Java subtype of T1

Corollaries:

– Objects always have implementations of the methods
specified by their declared type

– If all subtypes are true subtypes, then all objects meet the
specification of their declared type

Rules out a huge class of bugs

21 CSE331 Fall 2014

Inheritance can break encapsulation
public class InstrumentedHashSet<E>
 extends HashSet<E> {
 private int addCount = 0; // count # insertions
 public InstrumentedHashSet(Collection<? extends E> c){
 super(c);
 }
 public boolean add(E o) {
 addCount++;
 return super.add(o);
 }
 public boolean addAll(Collection<? extends E> c) {
 addCount += c.size();
 return super.addAll(c);
 }
 public int getAddCount() { return addCount; }
}

22 CSE331 Fall 2014

Dependence on implementation

What does this code print?
 InstrumentedHashSet<String> s =
 new InstrumentedHashSet<String>();
 System.out.println(s.getAddCount());
 s.addAll(Arrays.asList("CSE", "331"));
 System.out.println(s.getAddCount());

• Answer depends on implementation of addAll in HashSet
– Different implementations may behave differently!
– If HashSet’s addAll calls add, then double-counting

• AbstractCollection’s addAll specification:
– “Adds all of the elements in the specified collection to this

collection.”
– Does not specify whether it calls add

• Lesson: Subclassing often requires designing for extension

// 0

// 4?!

23 CSE331 Fall 2014

Solutions

1. Change spec of HashSet
– Indicate all self-calls
– Less flexibility for implementers of specification

2. Avoid spec ambiguity by avoiding self-calls
a) “Re-implement” methods such as addAll

• Requires re-implementing methods
b) Use a wrapper

• No longer a subtype (unless an interface is handy)
• Bad for callbacks, equality tests, etc.

24 CSE331 Fall 2014

Solution 2b: composition

public class InstrumentedHashSet<E> {
 private final HashSet<E> s = new HashSet<E>();
 private int addCount = 0;
 public InstrumentedHashSet(Collection<? extends E> c){

this.addAll(c);
 }
 public boolean add(E o) {
 addCount++; return s.add(o);
 }
 public boolean addAll(Collection<? extends E> c) {
 addCount += c.size();
 return s.addAll(c);
 }
 public int getAddCount() { return addCount; }
 // ... and every other method specified by HashSet<E>
}

The implementation
no longer matters

Delegate

25 CSE331 Fall 2014

Composition (wrappers, delegation)

Implementation reuse without inheritance

• Easy to reason about; self-calls are irrelevant

• Example of a “wrapper” class

• Works around badly-designed / badly-specified classes

• Disadvantages (may be worthwhile price to pay):
– Does not preserve subtyping
– Tedious to write (your IDE should help you)
– May be hard to apply to callbacks, equality tests

26 CSE331 Fall 2014

Composition does not preserve subtyping

• InstrumentedHashSet is not a HashSet anymore
– So can't easily substitute it

• It may be a true subtype of HashSet

– But Java doesn't know that!
– Java requires declared relationships
– Not enough just to meet specification

• Interfaces to the rescue

– Can declare that we implement interface Set
– If such an interface exists

27 CSE331 Fall 2014

Interfaces reintroduce Java subtyping
public class InstrumentedHashSet<E> implements Set<E>{
 private final Set<E> s = new HashSet<E>();
 private int addCount = 0;
 public InstrumentedHashSet(Collection<? extends E> c){

this.addAll(c);
 }
 public boolean add(E o) {
 addCount++;
 return s.add(o);
 }
 public boolean addAll(Collection<? extends E> c) {
 addCount += c.size();
 return s.addAll(c);
 }
 public int getAddCount() { return addCount; }
 // ... and every other method specified by Set<E>
}

Avoid encoding
implementation details

What’s bad about this constructor?

InstrumentedHashSet(Set<E> s) {
 this.s = s;
 addCount = s.size();
}

28 CSE331 Fall 2014

Interfaces and abstract classes

Provide interfaces for your functionality
– Client code to interfaces rather than concrete classes
– Allows different implementations later
– Facilitates composition, wrapper classes

• Basis of lots of useful, clever techniques
• We'll see more of these later

Consider also providing helper/template abstract classes
– Can minimize number of methods that new implementation

must provide
– Makes writing new implementations much easier
– Not necessary to use them to implement an interface, so

retain freedom to create radically different implementations
that meet an interface

 29 CSE331 Fall 2014

Java library interface/class example

// root interface of collection hierarchy
interface Collection<E>
// skeletal implementation of Collection<E>
abstract class AbstractCollection<E>
 implements Collection<E>
// type of all ordered collections
interface List<E> extends Collection<E>
// skeletal implementation of List<E>
abstract class AbstractList<E>
 extends AbstractCollection<E>
 implements List<E>
// an old friend...
class ArrayList<E> extends AbstractList<E>

30 CSE331 Fall 2014

Why interfaces instead of classes

Java design decisions:
– A class has exactly one superclass
– A class may implement multiple interfaces
– An interface may extend multiple interfaces

Observation:

– Multiple superclasses are difficult to use and to implement
– Multiple interfaces, single superclass gets most of the benefit

31 CSE331 Fall 2014

Pluses and minuses of inheritance

• Inheritance is a powerful way to achieve code reuse

• Inheritance can break encapsulation
– A subclass may need to depend on unspecified details of the

implementation of its superclass
• E.g., pattern of self-calls

– Subclass may need to evolve in tandem with superclass
• Okay within a package where implementation of both is

under control of same programmer

• Authors of superclass should design and document self-use, to
simplify extension
– Otherwise, avoid implementation inheritance and use

composition instead

32 CSE331 Fall 2014

