
 CSE 331 Midterm Exam 5/9/14 Sample Solution

 Page 1 of 11

Question 1. (10 points) (Forward reasoning) Using forward reasoning, write an assertion

in each blank space indicating what is known about the program state at that point, given

the precondition and the previously executed statements. Be as specific as possible.

(a) { x < 0 & y > 0 }

 y = 2;

 { x < 0 & y = 2 }

 x = x + y;

 { x < 2 & y = 2 }

(b) { |x| > 2 }

 x = x * 2;

 { |x| > 4 }

 x = x – 1;

 { x > 3 | x < -5 }

 CSE 331 Midterm Exam 5/9/14 Sample Solution

 Page 2 of 11

Question 2. (14 points) (assertions) Using backwards reasoning, find the weakest

precondition for each sequence of statements and postcondition below. Insert appropriate

assertions in each blank line. You should simplify your final answers if possible.

(a) (5 points)

 { |y-2+1| = 10 } => { |y-1|=10 } => { y=11 | y=-9 }

 x = y – 2;

 { |x+1| = 10 }

 w = x + 1;

 {|w| = 10}

(b) (9 points)

 { x > -1 }

 if (x > 4) {

 { x > 3 }

 x = x – 3;

 { x > 0 }

 } else if (x < -4) {

 { x > -3 }

 x = x + 3;

 { x > 0 }

 } else {

 { x > -1 }

 x = x + 1;

 { x > 0 }

 }

 { x > 0 }

The precondition for the entire if statement is

 (x > 4 & x > 3) | (x < -4 & x > -3) | (x <= 4 & x >= -4 & x > -1)

which simplifies to

 x > 4 | false | (x <= 4 & x > -1) => x > -1

 CSE 331 Midterm Exam 5/9/14 Sample Solution

 Page 3 of 11

Question 3. (22 points) Loop development. For this question, implement and prove

correct a method circularShiftRight that will rotate the elements of an array one

position to the right, with the rightmost element moving to the left end. More precisely,

we want to shift n elements of array a. Its initial condition (i.e., precondition) can be

described by the following picture:

 n

pre: a A[0] A[1] A[2] ... A[n-2] A[n-1]

After the method executes, the array should be rearranged as follows:

 n

post: a A[n-1] A[0] A[1] ... A[n-3] A[n-2]

We are using the notation A[i] to refer to the original value stored in a[i] rather than using

apre[i], which is more tedious to write. Feel free to use this upper-case A[i] notation to

reference original values in your answer, although you can write apre[i] if you wish. Just

be sure it is clear what you are doing.

For full credit, your code and proof should rearrange the array in O(n) time, using a

single pass through the array. You must rearrange the array elements with simple

assignment statements. You may use a small number of additional scalar variables in

your solution, but you may not use additional data structures such as another array to hold

a copy of the values. (You may, of course, use a few simple temporary variables to hold

some individual array elements.) For simplicity we assume the array elements have type

int. You may also assume that the array has at least n elements, but you may not make

any other assumptions about how large it is. You may not call additional methods or use

recursion in your solution.

(a) (4 points) Give a suitable loop invariant for the loop that shifts the array elements.

You may draw a picture as above or use notation like a[0..k] to describe array sections.

As a picture, a suitable invariant is

 k n

inv: a A[0] A[1] ... A[k-1] A[k] ... A[n-2]

plus an additional variable tmp = A[n-1]. Or in notation,

 inv: a[0..k-1] = A[0..k-1] & a[k+1..n-1] = A[k..n-2] & tmp = A[n-1]

(continued next page)

 CSE 331 Midterm Exam 5/9/14 Sample Solution

 Page 4 of 11

Question 3. (cont.) (b) (18 points) Implement method circularShiftRight below

and prove that your implementation is correct using appropriate assertions, preconditions,

post conditions, and invariants. Your proof should be precise and should not omit

essential details or expect the reader to supply missing steps, although you may omit truly

trivial assertions between consecutive statements if appropriate.

 // Rearrange a[0..n-1] by shifting the elements

 // circularly to the right. The element shifted off the

 // right end from position a[n-1] should move to a[0].

 void circularShiftRight(int[] a, int n) {

 tmp = a[n-1];

 k = n-1;

 { inv: a[0..k-1] = A[0..k-1] & a[k+1..n-1] = A[k..n-2] & tmp = A[n-1] }

 while (k != 0) {

 { inv & k != 0 }

 a[k] = a[k-1];

 { a[0..k-1] = A[0..k-1} & a[k..n-1] = A[k-1..n-2] & tmp = A[n-1] }

 k = k – 1;

 { inv }

 }

 { inv & k = 0 } => { a[1..n-1] = A[0..n-2] & tmp = A[n-1] }

 a[0] = tmp;

 { a[0] = A[n-1] & a[1..n-1] = A[0..n-2] }

 }

 CSE 331 Midterm Exam 5/9/14 Sample Solution

 Page 5 of 11

The next several questions concern the following partially implemented class, which

stores a list of items in a restaurant menu and their prices. Menu items are Strings like

“pizza” or “tofu”. Prices are integers giving the price in pennies (for example, a price of

249 represents $2.49). Prices are stored as java Integer values in a HashMap,

although all method parameters and results use ordinary Java ints.

You can remove this page and the next for reference as you work on the related

questions.

public class Menu {

 // menu data (instance variable)

 private HashMap<String, Integer> items;

 /** construct empty Menu */

 public Menu() {

 items = new HashMap<String, Integer>();

 }

 /** store item in menu with given price */

 public void addItem(String name, int price) {

 items.put(name, price);

 }

 /** Return true if item is included in this menu */

 public boolean contains(String item) {

 return items.get(item) != null;

 }

 /** Return the price of the named item */

 public int getPrice(String item) {

 ... // implementation omitted

 }

 /** Return the total price of all of the items in an order (a

 * list of item names), assuming that all of the items in

 * the order list actually appear in the menu. */

 public int getOrderPrice(List<String> order) {

 ... // implementation omitted

 }

}

(additional reference information on the next page)

 CSE 331 Midterm Exam 5/9/14 Sample Solution

 Page 6 of 11

Reference information about maps

If m is variable of type HashMap<K,V>, where K is the key type and V is the value

type, the following methods are available.

m.containsKey(k) return true if k is a key in map m

m.containsValue(v) return true if one or more keys in m map to the value v

m.get(k) return value associated with k, or null if k is not a key in m

m.isEmpty() return true if m contains no key-value mappings

m.keySet() return a Set<K> view of the keys in m

m.put(k,v) store value v with key k in m; return the previous value

 associated with k or null if k was not a key in m

m.remove(k) remove any key-value mapping with key k from m

m.size() return the number of key-value mappings in m

m.values() return a Collection<V> view of the values in m

Useful facts about ints and Integers

Suppose we have

 Integer num = new Integer(1);

 int n;

Then the assignment n=num will store the int value 1 in n, num+1 will evaluate to 2,

and if a method is supposed to return an int value, it can return the Integer num, and

the value 1 will be returned (i.e., an Integer object is converted to an int as needed).

However if we have Integer num = null; (which is legal) then the assignment

n=num and the expression num+1 will throw a NullPointerException since the

null value num cannot be converted to an int. Also if an int-valued method tries to

return null, a NullPointerException will also be thrown.

JUnit

A JUnit test is simply a void method preceded by the @Test annotation. Methods

provided by JUnit include assertTrue(...), assertFalse(...), assertEquals(expected,actual),

assertNull(...), and assertNotNull(...).

A method preceded by the annotation @Before will be executed before each test in the

suite.

 CSE 331 Midterm Exam 5/9/14 Sample Solution

 Page 7 of 11

Question 4. (10 points) Give a suitable Representation Invariant (RI) and Abstraction

Function (AF) for the Menu class describing when the data is valid and the abstract

meaning of a valid Menu object.

(a) Representation Invariant

items != null and if <K,V> is a key-value pair in items then K!=null and V != null

and V >= 0 (or V > 0 if you do not want to allow free items on the menu).

(b) Abstraction Function

For each pair <K,V> in items, K is the name of an item on the menu and V is its

price in pennies.

 CSE 331 Midterm Exam 5/9/14 Sample Solution

 Page 8 of 11

Question 5. (18 points) Specification and implementation. Method getOrderPrice

is supposed to take a list of strings that represent an order, and return the total price of the

items in that order. For example, if the menu contains the pairs <“cheeseburger”, 349>

and <“pepsi”, 120>, then getOrderPrice should return 818 for the input list

{“cheeseburger”, “cheeseburger”, “pepsi”}. (i.e., 349+349+120). The strings are

supposed be ones that are found in the menu.

Give a proper specification and implementation of this method below. Your specification

should be complete and the implementation must satisfy the specification. If any parts in

the specification are not needed (e.g., requires, modifies, etc.), leave them blank.

/**

 * Return the total cost of the items in the list order.

 *

 * @param order list of items being ordered

 *

 * @requires order!=null and every item in order appears

 * in the menu

 *

 * @throws

 *

 * @modifies

 *

 * @effects

 *

 * @return total price of items in order in pennies

 *

 */

public int getOrderPrice(List<String> order) {

 int total = 0;

 for (String item: order) {

 total += items.get(item);

 }

 return total;

}

 CSE 331 Midterm Exam 5/9/14 Sample Solution

 Page 9 of 11

Question 6. (8 points) Testing. The following JUnit test checks if the getOrderPrice

method is working properly. However there are several stylistic issues with it, even

though it does compile and execute, and the test passes. Circle two problems with this

test code and briefly describe what’s wrong and what should be changed.

There are more than two issues that could be improved. You only should explain two of

them.

Some of the issues with these tests are shown below.

public class TestSuite {

 private static final Menu TEST_MENU = new Menu();

 @Before

 public void setup() {

 TEST_MENU.addItem("Cheeseburger" , 200);

 TEST_MENU.addItem("Pizza" , 500);

 TEST_MENU.addItem("Water" , 120);

 }

 // All issues that need fixing appear beyond this point:

 @Test

 public void test1 () {

 List<String> order = new ArrayList<String >();

 double total = TEST_MENU.getOrderPrice(order);

 assertTrue(total == 0);

 order.add("Cheeseburger");

 order.add("Pizza");

 total = TEST_MENU.getOrderPrice(order);

 assertTrue(total == 700);

 order.add("Water");

 total = TEST_MENU.getOrderPrice(order);

 assertTrue(total == 820);

 }

}

Poor test name. Should

be more descriptive.

Testing too many things

in a single test method.

Should break this up into

multiple, smaller tests.

Should use more appropriate

assertions like assertEquals

instead of assertTrue.

Should use more appropriate

assertions like assertEquals

instead of assertTrue.

Should use more appropriate

assertions like assertEquals

instead of assertTrue.

 CSE 331 Midterm Exam 5/9/14 Sample Solution

 Page 10 of 11

Question 7. (18 points) Specifications and implementations. We would like to add a

method int getPrice(String item) to our Menu class. This method should

return the price of the requested item, but it needs to deal with the cases where the item is

not stored in the menu. Here are four possible specifications for this method.

 /** SPEC A

 * @requires item is not null and item appears in the menu

 * @return the price of the item

 */

 /** SPEC B

 * @requires item is not null

 * @return the price of the item if it appears in the menu, or

 * 0 if the item is not found in the menu

 */

 /** SPEC C

 * @requires item is not null

 * @return the price of item

 * @throws NoSuchElementException if item is not found in menu

 * (this is a standard Java library unchecked exception)

 */

 /** SPEC D

 * @return the price of the item if it appears in the menu, or

 * 0 if the item is not found in the menu

 * @throws NullPointerException if item is null

 */

(a) (6 points) Compare specifications. For each of the following pairs of specifications,

circle the letter of the specification that is stronger. Circle “neither” if the specifications

are either equivalent or incomparable, or if a specification contains an error or an

inconsistency.

(i) A B neither

(ii) A C neither

(iii) A D neither

(iv) B C neither

(v) B D neither

(vi) C D neither

 CSE 331 Midterm Exam 5/9/14 Sample Solution

 Page 11 of 11

Question 7. (cont.) Now, here are four possible implementations of getPrice:

 // Implementation 1:

 public int getPrice(String item) {

 return items.get(item);

 }

 // Implementation 2:

 public int getPrice(String item) {

 assert(item != null);

 Integer price = items.get(item);

 if (price == null) {

 throw new NoSuchElementException(); // unchecked exception

 }

 return price;

 }

 // Implementation 3:

 public int getPrice(String item) {

 if (item == null) {

 throw new NullPointerException(); // also unchecked

 }

 return items.get(item);

 }

 // Implementation 4:

 public int getPrice(String item) {

 assert(item != null);

 Integer price = items.get(item);

 if (price == null) {

 return 0;

 } else {

 return price;

 }

 }

(b) (12 points) Implementations and specifications. In the following table, place an X in

the square if the implementation whose number is given to the left satisfies the

specification whose letter is given at the top. Leave the entry blank if the implementation

does not satisfy the specification or if a specification contains an error or inconsistency.

 Spec. A Spec. B Spec.C Spec. D

Impl. 1 X

Impl. 2 X X

Impl. 3 X

Impl. 4 X X

