
Java Graphics & GUIs

(and Swing/AWT libraries)

CSE 331

Software Design & Implementation

Slides contain contributions from: M. Ernst, M. Hotan, R.

Mercer, D. Notkin, H. Perkins, S. Regis, M. Stepp;

Oracle docs & tutorial, Horstmann, Wikipedia, 2

1

Why study GUIs?

• Learn about event-driven programming techniques

• Practice learning and using a large, complex API

• A chance to see how it is designed and learn from it:

– design patterns: model-view separation,

callbacks, listeners, inheritance vs. delegation

– refactoring vs. reimplementing an ailing API

• Because GUIs are neat!

• Caution: There is way more here than you can memorize.

– Part of learning a large API is "letting go."

– First, learn the fundamental concepts and general ideas.

– Then, look things up as you need them

– Don’t get bogged down implementing eye candy

References

Today: Java graphics and Swing/AWT class libraries

Only an introduction! Also see

• Sun/Oracle Java tutorials

http://docs.oracle.com/javase/tutorial/uiswing/index.html

• Extra slides, on class website

• Core Java vol. I by Horstmann & Cornell

• If you have another favorite, use it

Next lecture:

Event-driven programming and user interaction

3

Outline

Organization of the Swing/AWT library

Graphics and drawing

Repaint callbacks, layout managers, etc.

Handling user events

Building GUI applications

MVC, user events, updates, &c

4

Java GUI libraries

• Swing: the main Java GUI library

– Benefits: Features; cross-platform compatibility; OO design

– Paints GUI controls itself pixel-by-pixel

• Does not delegate to OS’s window system

• Abstract Windowing Toolkit (AWT): Sun's initial GUI library

– Maps Java code to each operating system's real GUI system

– Problems: Limited to lowest common denominator (limited set of
UI widgets); clunky to use.

• Advice: Use Swing. You occasionally have to use AWT (Swing is built
on top of AWT). Beware: it’s easy to get them mixed up.

GUI terminology

window: A first-class citizen of the graphical desktop

Also called a top-level container

Examples: frame, dialog box, applet

component: A GUI widget that resides in a window

Also called controls in many other languages

Examples: button, text box, label

container: A component that hosts (holds) components

Examples: panel, box

6

Components

Component & container classes

8

Component

Container

Jcomponent

Jpanel JFileChooser
Tons of

Jcomponents

Various AWT
containers

Lots of AWT
components

Every GUI-related class

descends from

Component

“Atomic” components:

labels, text fields,

buttons, check boxes,

icons, menu items2

Containers can

hold nested

subcomponents

Swing/AWT inheritance hierarchy

Component (AWT)

Window

Frame
JFrame (Swing)

JDialog

Container

Jcomponent (Swing)
JButton JColorChooser JFileChooser

JComboBox JLabel JList

JMenuBar JOptionPane JPanel

JPopupMenu JProgressBar JScrollbar

JScrollPane JSlider JSpinner

JSplitPane JTabbedPane JTable

JToolbar JTree JTextArea

JTextField ...

9

Component fields (actually properties)

Each has a get (or is) accessor and a set modifier.

Examples: getColor, setFont, isVisible, 2

name description

background background color behind component

border border line around component

enabled whether it can be interacted with

focusable whether key text can be typed on it

font font used for text in component

foreground foreground color of component

height, width component's current size in pixels

visible whether component can be seen

tooltip text text shown when hovering mouse

size, minimum / maximum
/ preferred size

various sizes, size limits, or desired
sizes that the component may take

Types of containers

• Top-level containers: JFrame, JDialog, 2

– Often correspond to OS windows

– Can be used by themselves, but usually as a host for

other components

– Live at top of UI hierarchy, not nested in anything else

• Mid-level containers: panels, scroll panes, tool bars

– Sometimes contain other containers, sometimes not

– JPanel is a general-purpose component for drawing or

hosting other UI elements (buttons, etc.)

• Specialized containers: menus, list boxes, 2

• Technically, all J-components are containers

11

JFrame – top-level window

Graphical window on the screen

Typically holds (hosts) other components

Common methods:

JFrame(String title) – constructor, title optional

setSize(int width, int height) – set size

add(Component c) – add component to window

setVisible(boolean v) – make window visible

or not. Don’t forget this!

12

Example

SimpleFrameMain.java

13

More JFrame

• public void setDefaultCloseOperation(int op)

Makes the frame perform the given action when it closes.

– Common value passed: JFrame.EXIT_ON_CLOSE

– If not set, the program will never exit even if the frame is closed.

• public void setSize(int width, int height)

Gives the frame a fixed size in pixels.

• public void pack()

Resizes the frame to fit the components inside it snugly.

JPanel – a general-purpose container

Commonly used as a place for graphics, or to hold a

collection of button, labels, etc.

Needs to be added to a window or other container

frame.add(new Jpanel(…))

JPanels can be nested to any depth

Many methods/fields in common with JFrame (since

both inherit from Component)

Advice: can’t find a method/field? Check the

superclass(es)

Some new methods. Particularly useful:

setPreferredSize(Dimension d)

15

Containers and layout

What if we add several components to a container?

How are they positioned relative to each other?

Answer: each container has a layout manger.

Layout managers

Kinds:

– FlowLayout (left to right, top to bottom) – default for

JPanel

– BorderLayout (“center”, “north”, “south”, “east”,

“west”) – default for JFrame

– GridLayout (regular 2-D grid)

– others... (some are incredibly complex)

The first two should be good enough for now2.

17

Place components in a container; add the container to

a frame.

– container: An object that stores components and

governs their positions, sizes, and resizing

behavior.

18

pack()

Once all the components are added to their containers,

do this to make the window visible

pack();

setVisible(true);

pack() figures out the sizes of all components and

calls the layout manager to set locations in the

container (recursively as needed)

If your window doesn’t look right, you may have
forgotten pack()

19

Example

SimpleLayoutMain.java

20

Sizing and positioning

How does the programmer specify where each component appears,

how big each component should be, and what the component should

do if the window is resized / moved / maximized / etc.?

• Absolute positioning (C++, C#, others):

Programmer specifies exact pixel coordinates of every component.

– "Put this button at (x=15, y=75) and make it 70x31 px in size."

• Layout managers (Java):

Objects that decide where to position each component based on

some general rules or criteria.

– "Put these four buttons into a 2x2 grid and put these text boxes in

a horizontal flow in the south part of the frame."

JFrame as container

A JFrame is a container. Containers have these methods:

• public void add(Component comp)

public void add(Component comp, Object info)

Adds a component to the container, possibly giving extra information

about where to place it.

• public void remove(Component comp)

• public void setLayout(LayoutManager mgr)

Uses the given layout manager to position components.

• public void validate()

Refreshes the layout (if it changes after the container is onscreen).

Preferred sizes

• Swing component objects each have a certain size they would "like"

to be: Just large enough to fit their contents (text, icons, etc.).

– This is called the preferred size of the component.

– Some types of layout managers (e.g. FlowLayout) choose to

size the components inside them to the preferred size.

– Others (e.g. BorderLayout, GridLayout) disregard the

preferred size and use some other scheme to size the

components.

Buttons at preferred size: Not preferred size:

FlowLayout
public FlowLayout()

• treats container as a left-to-right, top-to-bottom "paragraph".

– Components are given preferred size, horizontally and vertically.

– Components are positioned in the order added.

– If too long, components wrap around to the next line.

myFrame.setLayout(new FlowLayout());

myFrame.add(new JButton("Button 1"));

– The default layout for containers other than JFrame (seen later).

BorderLayout

public BorderLayout()

• Divides container into five regions:

– NORTH and SOUTH regions expand to fill region horizontally,

and use the component's preferred size vertically.

– WEST and EAST regions expand to fill region vertically,

and use the component's preferred size horizontally.

– CENTER uses all space not occupied by others.

myFrame.setLayout(new BorderLayout());

myFrame.add(new JButton("Button 1"), BorderLayout.NORTH);

– This is the default layout for a JFrame.

GridLayout
public GridLayout(int rows, int columns)

• Treats container as a grid of equally-sized rows and columns.

• Components are given equal horizontal / vertical size, disregarding

preferred size.

• Can specify 0 rows or columns to indicate expansion in that direction

as needed.

Graphics and drawing

So far so good – and very boring2

What if we want to actually draw something? A map, an

image, a path, 2?

Answer: Override method paintComponent

Method in JComponent that draws the component

In JLabel’s case, it draws the label text

27

Example

SimplePaintMain.java

28

Graphics methods

Many methods to draw various lines, shapes, etc., 2

Can also draw images (pictures, etc.). Load the image
file into an Image object and use g.drawImage(…):

– In the program (not in paintComponent):

Image pic =

Toolkit.getDefaultToolkit()

.getImage(image path);

– Then in paintComponent:

g.drawImage(pic, ...);

29

Graphics vs Graphics2D

Class Graphics was part of the original Java AWT

Has a procedural interface: g.drawRect(…),

g.fillOval(…)

Swing introduced Graphics2D

Added a object interface – create instances of
Shape like Line2D, Rectangle2D, etc., and add

these to the Graphics2D object

Parameter to paintComponent is always Graphics2D.

Can always cast it to that class. Graphics2D supports

both sets of graphics methods.

Use whichever you like for CSE 331

30

So who calls paintComponent?

And when??

• Answer: the window manager calls paintComponent
whenever it wants!!!

– When the window is first made visible, and whenever
after that it is needed

• Corollary: paintComponent must always be ready to
repaint – regardless of what else is going on

– You have no control over when or how often – must
store enough information to repaint on demand

• If you want to redraw a window, call repaint() from the
program (not from paintComponent)

– Tells the window manager to schedule repainting

– Window manager will call paintComponent when it
decides to redraw (soon, but maybe not right away)

31

Example

FaceMain.java

32

How repainting happens

33

program window manager (UI)

repaint()

paintComponent(g)

It’s worse than it looks!

Your program and the
window manager are
running concurrently:

• Program thread

• User Interface thread

Do not attempt to mess
around – follow the rules
and nobody gets hurt!

Rules for painting – Obey!

• Always override paintComponent(g) if you want to
draw on a component

• Always call super.paintComponent(g) first

• NEVER call paintComponent yourself. That means
ABSOLUTELY POSITIVELY NEVER!!!

• Always paint the entire picture, from scratch

• Use paintComponent’s Graphics parameter to do
all the drawing. ONLY use it for that. Don’t copy it, try
to replace it, permanently side-effect it, etc. It is quick
to anger.

• DON’T create new Graphics or Graphics2D objects

• Fine print: Once you are a certified™ wizard, you may find reasons to do
things differently, but you aren’t there yet.

34

What’s next – and not

Major topic next time is how to handle user interactions

Key idea: the observer pattern

Beyond that you’re on your own to explore all the

wonderful widgets in Swing/AWT. Have fun!!!

(But don’t sink huge amounts of time into eye candy)

35

