Style: It isn’t just about fashion…

“Use the active voice.”
“Omit needless words.”

“Don't patch bad code - rewrite it.”
“Make sure your code 'does nothing' gracefully.”
Modules

A module is a relatively general term for a class or a type or any kind of design unit in software.

A modular design focuses on what modules are defined, what their specifications are, how they relate to each other, but not usually on the implementation of the modules themselves.
Ideals of modular software

Decomposable – can be broken down into modules to reduce complexity and allow teamwork

Composable – “Having divided to conquer, we must reunite to rule [M. Jackson].”

Understandable – one module can be examined, reasoned about, developed, etc. in isolation

Continuity – a small change in the requirements should affect a small number of modules

Isolation – an error in one module should be as contained as possible
Two general design issues

Cohesion – how well components fit together to form something that is self-contained, independent, and with a single, well-defined purpose

Coupling – how much dependency there is between components

Guideline: *reduce coupling, increase cohesion*

Applies to modules and individual routines
- Each method should do one thing well
- Each module should provide a single abstraction
Cohesion

The most common reason to put data and behavior together is to form an ADT (data abstraction)

There are, at least historically, other reasons to place elements together – for example, for performance reasons it was sometimes good to place together all code to be run upon initialization of a program, but these are secondary

The common design objective of separation of concerns suggests a module should represent a single concept

If a module implements more than one abstraction, consider breaking it into separate modules for each one
Coupling

How are modules dependent on one another?
- Statically (in the code)?
- Dynamically (at run-time)?
- More?

Ideally, split design into parts that don't interact much

Roughly, the more coupled modules are, the more they need to be thought of as a single, larger module

- An application
- A poor decomposition (parts strongly coupled)
- A better decomposition (parts weakly coupled)
Coupling is the path to the dark side

Coupling leads to complexity

Complexity leads to confusion

Confusion leads to suffering

Once you start down the dark path, forever will it dominate your destiny, consume you it will
Law of Demeter
Karl Lieberherr and colleagues

Law of Demeter: An object should know as little as possible about the internal structure of other objects with which it interacts – a question of coupling
Or… “only talk to your immediate friends”

Closely related to representation exposure and (im)mutability

Bad example – too-tight chain of coupling between classes

```java
general.getColonel().getMajor(m).getCaptain(cap)
    .getSergeant(ser).getPrivate(name).digFoxHole();
```

Better example

```java
general.superviseFoxHole(m, cap, ser, name);
```
An object should only send messages to … (More Demeter)

itself (this)
its instance variables
its methods’ parameters
any object it creates
any object returned by a call to one of this's methods
any objects in a collection of the above

notably absent: objects returned by messages sent to other objects

Guidelines: not strict rules!
But thinking about them will generally help you produce better designs
God classes

god class: a class that hoards too much of the data or functionality of a system

Poor cohesion – little thought about why all of the elements are placed together
Reduces coupling but only by collapsing multiple modules into one (which replaces dependences between modules with dependences within a module)

A god class is an example of an anti-pattern – it is a known bad way of doing things
Cohesion again…

Methods should do one thing well:
 Compute a value but let client decide what to do with it
 Observe or mutate, don’t do both
 Don’t print as a side effect of some other operation

Don’t limit future possible uses of the method by having it do multiple, not-necessarily related things (like printing)

If you’ve got a method that is doing too much, split it up
 Maybe separate, unrelated methods; maybe one method that does a task and another that calls it
 “Flag” variables are often a symptom of this problem
Method design

Effective Java (EJ) Tip #40: Design method signatures carefully
 Avoid long parameter lists
 Perlis: “If you have a procedure with ten parameters, you probably missed some.”
 Especially error-prone if parameters are all the same type
 Avoid methods that take lots of boolean "flag" parameters

EJ Tip #41: Use overloading judiciously
 Can be useful, but avoid overloading with same number of parameters, and think about whether methods really are related.
Field design

A variable should be made into a field if and only if:
 It is part of the inherent internal state of the object
 It has a value that retains meaning throughout the object's life
 Its state must persist past the end of any one public method
 All other variables can and should be local to the methods in which they are used
 Fields should not be used to avoid parameter passing
 Not every constructor parameter needs to be a field
Constructor design

Constructors should take all arguments necessary to initialize the object's state – no more, no less.

Don't make the client pass in things they shouldn't have to.

Object should be completely initialized after constructor is done (i.e., the rep invariant should hold).

Shouldn't need to call other methods to “finish” initialization.

Minimize the work done in a constructor.

A constructor should not do any heavy work, such as printing state, or performing expensive computations.

If an object's creation is heavyweight, use a static method instead.
Naming

Choose good names for classes and interfaces

Class names should be nouns
 Watch out for "verb + er" names, e.g. Manager, Scheduler, ShapeDisplayer
 Interface names often end in -able or -ible, e.g. Iterable, Comparable

Method names should be noun or verb phrases (nouns for observers, verbs for mutators, etc...)
 Observer methods can be nouns like size or totalSales
 Many observers should be named with "get" or "is" or "has"
 Most mutators should be named with "set" or similar
 Choose affirmative, positive names over negative ones
 isSafe not isUnsafe
 isEmpty not hasNoElements

EJ Tip #56: Adhere to generally accepted naming conventions
Terrible names…

count, flag, status, compute, check, value, pointer, any name starting with my… These convey no useful information

myWidget is a cliché – sounds like picked by a 3-year-old

What others can you think of?

Describe what is being counted, what the “flag” indicates, etc.

numberOfStudents, courseFull, flightStatus (still not great), calculatePayroll, validateWebForm, …

But short names in local contexts are good:

Good: for (i = 0; i < size; i++) items[i]=0;

Bad: for (theLoopCounter = 0;
 theLoopCounter < theCollectionSize;
 theLoopCounter++)
 theCollectionItems[theLoopCounter]=0;
Class design ideals

Cohesion and coupling, already discussed

Completeness: Every class should present a complete interface

Clarity: Interface should make sense without confusion

Convenience: Provide simple ways for clients to do common tasks

Consistency: In names, param/returns, ordering, and behavior
Completeness

Include *important* methods to make a class easy to use
counterexamples:

A mutable collection with `add` but no `remove`
A tool object with a `setHighlighted` method to select it, but no `setUnhighlighted` method to deselect it

Date class with no date-arithmetic operations

Also:

Objects that have a natural ordering should implement `Comparable`
Objects that might have duplicates should implement `equals` (and therefore `hashCode`)
Almost all objects should implement `toString`
But...

Don’t include everything you can possibly think of. If you include it you’re stuck with it forever (even if almost nobody ever uses it)

Tricky balancing act: include what’s needed/useful, but don’t make things overly complicated. You can always add it later if you really need it.

“Everything should be made as simple as possible, but not simpler.”
- Einstein
Clarity and Convenience

Clarity: An interface should make sense without creating confusion

Even without fully reading the spec/docs, a client should largely be able to follow his/her natural intuitions about how to use your class – although reading and precision are crucial

Counterexample: Iterator's remove method

Convenience: Provide simple ways for clients to do common tasks

If you have a size / indexOf, include isEmpty / contains, too

Counterexample: System.in is terrible; finally fixed with Scanner
A class or interface should have consistent names, parameters/returns, ordering, and behavior.

Use a similar naming scheme; accept parameters in the same order – not like:

```java
setFirst(int index, String value)
setLast(String value, int index)
```

Other examples of inconsistencies:

- `Date/GregorianCalendar` use 0-based months.
- `String` methods: `equalsIgnoreCase`, `compareToIgnoreCase`;
  ```java
  but regionMatches(boolean ignoreCase)
  String.length(), array.length, collection.size()
  ```
Open-Closed Principle

Software entities should be open for extension, but closed for modification

When features are added to your system, do so by adding new classes or reusing existing ones in new ways

If possible, don't make change by modifying existing ones – existing code works and changing it can introduce bugs and errors.

Related: Code to interfaces, not to classes

Ex: accept a List parameter, not ArrayList or LinkedList

EJ Tip #52: Refer to objects by their interfaces
Cohesion again ("expert pattern")

The class that contains most of the data needed to perform a task should perform the task

counterexample: A class with lots of getters but not a lot of methods that actually do work – relies on other classes to “get” the data and process it externally
countercounterexample: should a graph contain every possible/necessary search algorithm?

Reduce duplication

Only one class should be responsible for maintaining a set of data, even (especially) if it is used by many other classes
Invariants

Class invariant: An assertion that is true about every object of a class throughout each object’s lifetime

 Ex: A BankAccount's balance will never be negative

These are often representation invariants

State them in your documentation, and enforce them in your code
Documenting a class

Keep internal and external documentation separate

external: /** ... */ Javadoc for classes, interfaces, and methods
 Describes things that clients need to know about the class
 Should be specific enough to exclude unacceptable implementations, but general enough to allow for all correct implementations
 Includes all pre/postconditions and abstract class invariants

internal: // comments inside method bodies
 Describes details of how the code is implemented
 Information that clients wouldn't and shouldn't need, but a fellow developer working on this class would want – invariants and internal pre/post conditions especially
The role of documentation
From Kernighan and Plauger

• If a program is incorrect, it matters little what the docs say
• If documentation does not agree with the code, it is not worth much
• Consequently, code must largely document itself. If not, rewrite the code rather than increasing the documentation of the existing complex code. Good code needs fewer comments than bad code.
• Comments should provide additional information from the code itself. They should not echo the code.
• Mnemonic variable names and labels, and a layout that emphasizes logical structure, help make a program self-documenting
Static vs. non-static design

What members should be **static**?
- members that are related to an entire class
- not related to the data inside a particular object of that class’s type
- Should I have to construct an object just to call this method?

Examples
- `Time.fromString`
- `Math.pow`
- `Calendar.getInstance`
- `NumberFormatter.getCurrencyInstance`
- `Arrays.toString`? `Collections.sort`?
Public vs. private design

Strive to minimize the public interface of the classes
 Clients like classes that are simple to use and understand
 Reasoning is easier with narrower interfaces and specifications
Achieve a minimal public interface by
 Removing unnecessary methods – consider each one
 Making everything private unless absolutely necessary
 Pulling out unrelated behavior into a separate class

`public static` constants are okay if declared `final`
 But still better to have a `public static` method to get the value; why?
 Or use enums if that’s what you’re trying to do
Choosing types – some hints

Numbers: Favor int and long for most numeric computations

EJ Tip #48: Avoid float and double if exact answers are required

 Classic example: Money (round-off is bad here)

Favor the use of collections (e.g. lists) over arrays

Strings are often overused since much data is read as text
Choosing types – more hints

Consider use of enums, even with only two values – which of the following is better?

```java
oven.setTemp(97, true);
oven.setTemp(97, Temperature.CELSIUS);
```

Wrapper types should be used minimally (usually with collections)

EJ Tip #49: Prefer primitive types (int, double) to boxed primitives (that is, Integer, Float, etc.)

Bad: `public Tally(Character ch)`
Independence of views

• Confine user interaction to a core set of “view” classes and isolate these from the classes that maintain the key system data

• Do not put `println` statements in your core classes
 – This locks your code into a text representation
 – Makes it less useful if the client wants a GUI, a web app, etc.

• Instead, have your core classes return data that can be displayed by the view classes
 – Which of the following is better?
    ```java
    public void printMyself()
    public String toString()
    ```
Last thoughts (for now)

• Always remember your reader
 – Who are they?
 • Clients of your code
 • Other programmers working with the code
 – (including yourself in 3 weeks/months/years)
 – What do they need to know?
 • How to use it (clients)
 • How it works, but more important, *why* it was done this way (implementers)
• Read/reread style and design advice regularly
• Keep practicing – mastery takes time and experience
• You’ll always be learning. Keep looking for better ways to do things!