Project Orientation

...the sequel

Krysta Yousoufian
CSE 331 Section, 2/9/2012
Announcements

- Email course staff if using late day for HW4
- Office hours switchup
 - Me: 4-5 today, CSE 002
 - Hal: 3:30-4:30 tomorrow, CSE 002(?)
HW5

- Build a route-finder between UW buildings
- Given data:
 - Map of campus (won’t need for this HW5)
 - Names, pixel coords of buildings
 - Start, end coords of path segments
- Nodes: points on the graph
 - Buildings
 - Non-building path endpoints
- Edges: path segments between points
 - Cost: length of path
Comparability

- Multiple routes between buildings
- Want route with shortest distance
- Natural ordering to routes:
 - route1 < route2 if route1 is faster
 - route1 == route2 if same distance
 - route1 > route2 if route1 is slower
- Routes are comparable
Comparable\textless{}E\textgreater{}: Java interface for objects with a natural ordering

- Method: a.compareTo(b)
 - Returns < 0 if $a < b$
 - Returns 0 if $a.equals(b)$
 - Returns > 0 if $a > b$

Equality

- `compareTo()`
 - Classes with a natural ordering that implement `Comparable`
 - Should returns 0 iff `equals()` returns `true`

- `equals()`
 - Defined in all classes
 - Default: `Object.equals()` – reference equality
 - Can be overridden:
    ```java
    @Override
    public void equals(Object other)
    ```
HashMaps

- You’ve seen dictionaries/maps
 - Set of <Key,Value> pairs
 - Lookup by key, get corresponding value
 - Student directory: <name, contact info>
 - Webster’s Dictionary: <word, definition>
 - Time schedule: <SLN, class information>

- **Hashmaps**: O(1) lookup of keys
 - Lookup time is independent of size of map
 - Too good to be true?!
 - Java: HashMap or Hashtable (keys → values), HashSet (just keys)
Hash functions

- Hash tables use a **hash function**
 - Function from key (any object) to hash value (int)
- Used to index into array storing <key, value> pairs
- If you don’t find the key at this index (or nearby), assume it’s not in the list
- If “equal” objects have different hash values, lookups will fail – incorrectly report that object is not present
public int hashCode()

- Method provided by all Java objects
- Returns object’s hash value
- Inherited from Object: if $a == b$, then a.hashCode() == b.hashCode()
- More generally: if a.equals(b), then a.hashCode() == b.hashCode()
 - If !a.equals(b), then it doesn’t strictly matter either way
- **If you override equals(), you must override hashCode()**
 - Equal objects must have same hash code
You write the parser (probably)

Buildings:

<table>
<thead>
<tr>
<th>shortName</th>
<th>longName</th>
<th>xCoord</th>
<th>yCoord</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE</td>
<td>Paul G. Allen Center</td>
<td>1903.7201</td>
<td>1952.4322</td>
</tr>
</tbody>
</table>

Paths:

- Map from coord. pairs \(\rightarrow \) connected coords and distance

\[(x,y) \rightarrow \{(x,y,\text{dist}), \ldots\}\]
Path data example

- \((1200, 1800) \rightarrow \{\)
 - \((1212, 1823): 10.5,\)
 - \((1250, 1795): 9.8,\)
 - \((1169, 1850): 12.4\)
- \}\)
Path data example

There is a path segment to this point…

…with this length
Visualization

(1200, 1800) $\rightarrow \{$
(1212, 1823): 10.5,
(1250, 1795): 9.8,
(1169, 1850): 12.4
$\}$
Minimum-Cost Paths

- Edge label is a cost
 - Money, time, …
 - Here, cost represents distance
- Want to find minimum-cost path
 - Not necessarily shortest path (in # of edges)
Shortest Path

![Diagram of a graph with nodes and edges labeled with numbers 1 and 10. The red line represents the shortest path.]
Min-Cost Path
Physical Map as Graph
Physical Map as Graph

2 edges
Large physical distance
Physical Map as Graph

3 edges
Short physical distance
Priority Queues

- Set of objects with some ordering
- Knows the minimum object in the list
- Operations: `add()`, `removeMin()`
- (Assuming review; come to OH if not)
Priority Queues

- Application: Dijkstra’s algorithm
 - Find min-cost path from source node s
 - Data: nodes
 - Ordering: min-cost path from s so far
- Java:
 - PriorityQueue
 - Comparable
 - Create PriorityQueue< MyClass > where
 MyClass implements Comparable< MyClass >
Dijkstra’s Algorithm

- Want: min-cost path from s to t
- Get: min-cost path from s to all other nodes (traditionally)
- Optimized: stop when we find min-cost path for t
Dijkstra’s Algorithm

Invariants:

- \(p(s,n) = \) min-cost path known so far from \(s \) to \(n \) for any node \(n \)
- \(c(s,n) = \) cost of \(p(s,n) \)
- Priority\(\text{Queue} \) active = \{ \(n \mid \) we know some path \(p(s,n) \),
but maybe not optimal path \}
- active ordered by \(c(s,n) \)
- Set finished = \{ \(n \mid \) we know optimal path \(s\ldots n \) \}

Initial setup:

\[
\begin{align*}
c(s,s) & = 0 \\
c(s,n) & = \text{infinity/unknown for } s \neq n \\
\end{align*}
\]

Insert \(s \) into active
Dijkstra’s Algorithm

While active is not empty:
 Remove the element n with minimum c(s,n)
 For each neighbor m of n:
 If m is not in finished (i.e. haven’t found optimal path):
 Let e denote the edge <n,m>
 If c(s,m) is unknown or is > c(s,n) + c(e)
 p(s,m) = p(s,n) + e
 c(s,m) = c(s,n) + c(e)
 Add or reorder m in active
 Add n to finished
Example

active = {S}
finished = { }
Min-cost paths:
A: ?
B: ?
C: ?
D: ?
E: ?
F: ?
S: 0

(from Data Structures & Their Algorithms, Lewis & Denenberg, 1991)
Example

active = \{A, B, C\}
finished = \{S\}

Min-cost paths:
A: \(? + 7 = 7 \)
B: \(? + 3 = 3 \)
C: \(? + 5 = 5 \)
D: ?
E: ?
F: ?
S: 0

(from Data Structures & Their Algorithms, Lewis & Denenberg, 1991)
Example

active = \{A, C, E\}
finished = \{B, S\}

Min-cost paths:
A: 7
B: 3
C: 5 3+1=4
D: ?
E: ? 3+1=4
F: ?
S: 0

(from Data Structures & Their Algorithms, Lewis & Denenberg, 1991)
Example

active = {A, E}
finished = {B, C, S}

Min-cost paths:

A: 7
B: 3
C: 4
D: ?
E: 4
F: ?
S: 0

(from Data Structures & Their Algorithms, Lewis & Denenberg, 1991)
Example

\[\text{active} = \{A\}\]
\[\text{finished} = \{B, C, E, S\}\]

Min-cost paths:

- A: \(7 + 4 + 2 = 6\)
- B: 3
- C: 4
- D: ?
- E: 4
- F: ?
- S: 0

(from *Data Structures & Their Algorithms*, Lewis & Denenberg, 1991)
Example

active = \{D\}
finished = \{A,B,C,E,S\}

Min-cost paths:
- A: 6
- B: 3
- C: 4
- D: ? 6+5=12
- E: 4
- F: ?
- S: 0

(from Data Structures & Their Algorithms, Lewis & Denenberg, 1991)
Example

active = {}
finished = {A, B, C, D, E, S}

Min-cost paths:
A: 6
B: 3
C: 4
D: 11
E: 4
F: ?
S: 0

(from Data Structures & Their Algorithms, Lewis & Denenberg, 1991)