Project Orientation

Version Control / Subversion
Graphs
And other fun stuff!

Krysta Yousoufian
CSE 331 Section, 2/2/2012
With material from Marty Stepp and others
Announcements

- Pick up HW2 and solutions after class
 - Questions? Best to ask TA who graded that problem
 - Zach: questions 1, 4
 - Jackson: question 2
 - Laure: question 3
 - I’ll try to answer questions, but I didn’t grade

- Reading quiz: due 2am Friday (i.e. tonight)

- HW4: due Thursday, Feb. 9th
 - Try to do a commit this weekend

- Midterm: Monday, Feb. 13th
VERSION CONTROL
Organization

- Don’t worry how repo stores files
- Don’t try to edit repo files directly (outside SVN)
Setup Actions

1. Install version control software

2a. One person per team:
 ◦ **Create** the repository
 ◦ **Import** a new project

2a. Everyone else: **checkout** the repository
Common Actions

Everyday commands:

• **Update**
 ◦ Merge others’ changes *from* repo *into* your working copy

• **Commit / checkin**
 ◦ Merge changes *into* repo *from* your working copy
 ◦ May need/want to **update** first
Common Actions

Slightly less frequent commands:

- **Add, delete**
 - add or delete a file in repo
 - Local additions/deletions not propagated otherwise

- **Revert**
 - Erase your local changes to a file

- **Resolve, diff, merge**
 - Handle a conflict – two users editing the same code
Subversion

- One version control system
- Simple, free
- There are lots of others
 - Git, Mercurial, Hg, …
- Several ways to run:
 - Command-line
 - GUI (TortoiseSVN, NautilusSVN)
 - **Subclipse**: plugin for Eclipse
- Good reference:
 - http://svnbook.red-bean.com/
Using Subclipse

- Follow setup, checkout instructions on HW4
- Package Explorer > select project > right-click > Team
 - Commit
 - Update: “Update to HEAD”
 - etc.
Subclipse Demo
Very important!

- Do a commit this weekend!
- Some students had configuration issues last quarter
- This is how you’ll submit your project
- Fix any issues now, not at 10:59pm Thursday
Commit Errors

• “Malformed network data error”
 ◦ Make sure you have Subclipse v1.6
 ◦ In Eclipse, go to Window -> Preferences -> Team -> SVN, and under "SVN Interface," change "JavaHL" to "SVNKit."

• Other errors?
 ◦ If Google can’t solve it, post precise error message or screenshot on discussion board
 ◦ If Google can solve it, post answer to discussion board
GRAPHS
Graphs

- **Graph**: a collection of nodes and edges
- **Node**: a point on the graph
- **Edge**: connects two nodes
Directed Graphs

- Edges are one way
 - $e_1 = \langle A, B \rangle$ is an edge from A to B
 - $e_2 = \langle B, A \rangle$ is an edge from B to A
 - Graph can contain e_1, e_2, neither, or both
Labeled Graphs

- Label on every edge
Path

- Formally: a sequence of edges \(<n_1, n_2>, <n_2, n_3>, \ldots, <n_{i-1}, n_i>\)
- Informally: a route through the graph formed by following edges
Path

- Formally: a sequence of edges \(<n_1, n_2>, <n_2, n_3>, \ldots, <n_{i-1}, n_i> \)
- Informally: a route through the graph formed by following edges
Path

- Formally: a sequence of edges $<n_1, n_2>$, $<n_2, n_3>$, ..., $<n_{i-1}, n_i>$
- Informally: a route through the graph formed by following edges
Path

- Formally: a sequence of edges \(<n_1, n_2>, <n_2, n_3>, \ldots, <n_{i-1}, n_i> \)
- Informally: a route through the graph formed by following edges
What can you do with a graph?

- What nodes are reachable (have a path) from some node?
- What is the shortest path (fewest edges) between two nodes?
- If edge labels represent costs, what is the minimum-cost path between two nodes?
 - Not necessarily the path with fewest edges!
Breadth-first search (BFS)

- An algorithm for traversing a graph
 - Aside: contrast with depth-first search (DFS)

- Given a starting node s:
 - Visit all neighbors of s (direct edge from s)
 - Visit neighbors of neighbors
 - Visit neighbors of neighbors of neighbors
 - ...

- If searching for a path to some node t, stop when you find t
BFS
BFS
BFS
Dijkstra’s algorithm

- Labels on edges are “costs”
 - Money, distance, time, etc.
- Find path from s to t of lowest cost
- Not necessarily the shortest path
Dijkstra’s algorithm

- Labels on edges are “costs”
 - Money, distance, time, etc.
- Find path from s to t of lowest cost
- Not necessarily the shortest path
Dijkstra’s algorithm

- Labels on edges are “costs”
 - Money, distance, time, etc.
- Find path from s to t of lowest cost
- Not necessarily the shortest path
Dijkstra’s algorithm

- Labels on edges are “costs”
 - Money, distance, time, etc.
- Find path from s to t of lowest cost
- Not necessarily the shortest path
Ring buffer

- Implementation of queue