Reasoning about code

CSE 331
University of Washington
Reasoning about code

Determine what facts are true during execution:

- $x > 0$
- For all nodes n: $n.next.previous == n$
- Array a is sorted
- $x + y == z$
- If $x \neq \text{null}$, then $x.a > x.b$

Applications:

- Ensure code is correct (via reasoning or testing)
- Understand why code is incorrect
Forward reasoning

You know what is true before running the code
What is true after running the code?
Given a precondition, what is the postcondition?
Example:
// precondition: x is even
 x = x + 3;
y = 2x;
x = 5;
// postcondition: ??
Application:
 Rep invariant holds before running code
 Does it still hold after running code?
You know what you want to be true after running the code. What must be true beforehand in order to ensure that? Given a postcondition, what is the corresponding precondition? Example:

```java
// precondition: ??
x = x + 3;
y = 2x;
x = 5;
// postcondition:  y > x
```

Application:
(Re-)establish rep invariant at method exit: what requires? Reproduce a bug: what must the input have been? Exploit a bug
SQL injection attack

Server code bug: SQL query constructed using unfiltered user input

```sql
query = "SELECT * FROM users "
   + "WHERE name='" + userInput + "';"
```

User inputs: \texttt{a' or '1='1}

Result:

```
query ⇒ SELECT * FROM users
       WHERE name='a' or '1='1';
```

Query returns information about all users

Program logic is supposed to scrub user inputs
Does it?

http://xkcd.com/327/
Forward vs. backward reasoning

Forward reasoning is more intuitive for most people

- Helps you understand what will happen (simulates the code)
- Introduces facts that may be irrelevant to goal
- Set of current facts may get large
- Takes longer to realize that the task is hopeless

Backward reasoning is usually more helpful

- Helps you understand what should happen
- Given an error, gives a test case that exposes it
Reasoning about code statements

Goal: Convert assertions about programs into logic

General plan
- Eliminate code a statement at a time
- Rely on knowledge of logic and types

There is a (forward and backward) rule for each statement in the programming language
- Loops have no rule: you have to guess a loop invariant

Jargon: $P \{\text{code}\} Q$
- P and Q are logical statements (about program values)
- code is Java code
- “$P \{\text{code}\} Q$” means “if P is true and you execute code, then Q is true afterward”

Is this notation good for forward or for backward reasoning?
assert x >= 0; // x ≥ 0
z = 0; // x ≥ 0 & z = 0
if (i != 0) {
 z = x; // x > 0 & z = x
} else {
 z = z + 1; // x = 0 & z = 1
}
assert z > 0; // x ≥ 0 & z > 0
Forward reasoning with a loop

assert x >= 0;

i = x;

z = 0;

while (i != 0) {
 z = z + 1;
 i = i - 1;
}

assert x == z;

Infinite number of paths through this code
How do you know that the overall conclusion is correct?

Induction on the length of the computation
Backward reasoning: Assignment

// precondition: ??
\[x = e; \]
// postcondition: Q
Precondition = Q with all (free) occurrences of x replaced by e

Examples:

// assert: ?? \[y = x + 1; \]
// assert \(y > 0 \)
Precondition = \((x+1) > 0\)

// assert: ?? \[z = z + 1; \]
// assert \(z > 0 \)
Precondition = \((z+1) > 0\)

Notation: \(\text{wp} \) for “weakest precondition”
\[\text{wp}("x=e;", Q) = Q \text{ with } x \text{ replaced by } e \]
Method calls

```java
// precondition: ??
x = foo();
// postcondition: Q

If the method has no side effects: just like ordinary assignment
// precondition: ??  (y = 22 or y = -22) and (x = anything)
x = Math.abs(y);
// postcondition: x = 22

If it has side effects: an assignment to every var in modifies
Use the method specification to determine the new value
// precondition: ??  z+1 = 22
incrementZ();  // spec: z\text{post} = z\text{pre} + 1
// postcondition: z = 22
```
Composition (statement sequences; blocks)

// precondition: ??
S1; // some statement
S2; // another statement
// postcondition: Q

Work from back to front
Precondition = wp(“S1; S2;”, Q) = wp(“S1;”, wp(“S2;”, Q))

Example:
// precondition: ??
x = 0;
y = x+1;
// postcondition: y > 0
If statements

// precondition: ??
if (b) S1 else S2
// postcondition: Q

Do case analysis:

wp("if (b) S1 else S2", Q)
= (b ⇒ wp("s1", Q)
 ∧ ¬b ⇒ wp("s2", Q))
= (b ∧ wp("s1", Q)
 ∨ ¬b ∧ wp("s2", Q)

(Note no substitution in the condition.)
If statement example

// precondition: ??
if (x < 5) {
 x = x*x;
} else {
 x = x+1;
}
// postcondition: x ≥ 9

Precondition
= \text{wp}("if (x<5) \{x = x*x;\} else \{x = x+1\}", x \geq 9)
= (x < 5 \land \text{wp}("x=x*x", x \geq 9)) \lor (x \geq 5 \land \text{wp}("x=x+1", x \geq 9))
= (x \leq -3) \lor (x \geq 3 \land x < 5) \lor (x \geq 8)
Reasoning about loops

A loop represents an unknown number of paths

Case analysis is problematic

Recursion presents the same problem as loops

Cannot enumerate all paths

This is what makes testing and reasoning hard
Reasoning about loops: values and termination

// assert x ≥ 0 & y = 0
while (x != y) {
 y = y + 1;
}
// assert x = y

Does this loop terminate?
1) Pre-assertion guarantees that x ≥ y
2) Every time through loop
 x ≥ y holds – and if body is entered, x > y
 y is incremented by 1
 x is unchanged
 Therefore, y is closer to x (but x ≥ y still holds)
3) Since there are only a finite number of integers between x and y, y
 will eventually equal x
4) Execution exits the loop as soon as x = y
Understanding loops by induction

We just made an inductive argument
Inducting over the number of iterations

Computation induction
Show that conjecture holds if zero iterations
Show that it holds after $n+1$ iterations
(assuming that it holds after n iterations)

Two things to prove
Some property is preserved (known as “partial correctness”)
Loop invariant is preserved by each iteration
The loop completes (known as “termination”)
The “decrementing function” is reduced by each iteration
and cannot be reduced forever
How to choose a loop invariant, LI

// assert P
while (b) S;
// assert Q

Find an invariant, LI, such that

1. \(P \Rightarrow LI \) // true initially
2. \(LI \land b \{ S \} LI \) // true if the loop executes once
3. \((LI \land \neg b) \Rightarrow Q \) // establishes the postcondition

It is sufficient to know that if loop terminates, Q will hold. Finding the invariant is the key to reasoning about loops. Inductive assertions is a complete method of proof:

If a loop satisfies pre/post conditions, then there exists an invariant sufficient to prove it
Loop invariant for the example

//assert x ≥ 0 & y = 0
while (x != y) {
 y = y + 1;
}
//assert x = y

A suitable invariant:

\(LI = x \geq y \)

1. \(x \geq 0 \ & \ y = 0 \Rightarrow LI \) \quad // true initially
2. \(LI \ & \ x \neq y \ {y = y+1;} \ LI \) \quad // true if the loop executes once
3. \((LI \ & \ \neg(x \neq y)) \ \Rightarrow \ x = y \) \quad // establishes the postcondition
Total correctness via well-ordered sets

We have not established that the loop terminates. Suppose that the loop always reduces some variable’s value. Does the loop terminate if the variable is a

– Natural number?
– Integer?
– Non-negative real number?
– Boolean?
– ArrayList?

The loop terminates if the variable values are (a subset of) a well-ordered set

– Ordered set
– Every non-empty subset has least element
Decrementing function

Decrementing function $D(X)$
Maps state (program variables) to some well-ordered set
Tip: always use the natural numbers
This greatly simplifies reasoning about termination

Consider: \texttt{while (b) S;}
We seek $D(X)$, where X is the state, such that

1. An execution of the loop reduces the function’s value:
 \[\text{LI } \& \ b \ \{S\} \ D(X_{\text{post}}) < D(X_{\text{pre}}) \]

2. If the function’s value is minimal, the loop terminates:
 \[(\text{LI } \& \ D(X) = \text{minVal}) \implies \neg b \]
Proving termination

// assert x ≥ 0 & y = 0
// Loop invariant: x ≥ y
// Loop decrements: (x-y)
while (x != y) {
 y = y + 1;
}
// assert x = y

Is this a good decrementing function?

1. Does the loop reduce the decrementing function’s value?
 // assert (y ≠ x); let d_{pre} = (x-y)
 y = y + 1;
 // assert (x_{post} - y_{post}) < d_{pre}

2. If the function has minimum value, does the loop exit?
 (x ≥ y & x - y = 0) ⇒ (x = y)
Choosing loop invariants

For straight-line code, the wp (weakest precondition) function gives us the appropriate property.

For loops, you have to guess:
- The loop invariant
- The decrementing function

Then, use reasoning techniques to prove the goal property.

If the proof doesn't work:
- Maybe you chose a bad invariant or decrementing function
 - Choose another and try again
- Maybe the loop is incorrect
 - Fix the code

Automatically choosing loop invariants is a research topic.
When to use code proofs for loops

Most of your loops need no proofs

for (String name : friends) { ... }

Write loop invariants and decrementing functions when you are unsure about a loop

If a loop is not working:

Add invariant and decrementing function if missing
Write code to check them
Understand why the code doesn't work
Reason to ensure that no similar bugs remain