Understanding ADTs

CSE 331
University of Washington
Ways to get your design right

The hard way
 Start hacking
 When something doesn't work, hack some more
 How do you know it doesn't work?
 Need to reproduce the errors your users experience
 Apply caffeine liberally

The easier way
 Plan first (specs, system decomposition, tests, ...)
 Less apparent progress upfront
 Faster completion times
 Better delivered product
 Less frustration
Ways to verify your code

The hard way: hacking
- Make up some inputs
- If it doesn't crash, ship it
- When it fails in the field, attempt to debug

An easier way: systematic testing
- Reason about possible behaviors and desired outcomes
- Construct simple tests that exercise all behaviors

Another way that can be easy: reasoning
- **Prove** that the system does what you want
 - Rep invariants are preserved
 - Implementation satisfies specification
- Proof can be formal or informal (we will be informal)
- Complementary to testing
Uses of reasoning

Goal: correct code

• Verify that rep invariant is satisfied
• Verify that the implementation satisfies the spec
• Verify that client code behaves correctly
 Assuming that the implementation is correct
Goal: Demonstrate that rep invariant is satisfied

• Exhaustive testing
 – Create every possible object of the type
 – Check rep invariant for each object
 – Problem: impractical

• Limited testing
 – Choose representative objects of the type
 – Check rep invariant for each object
 – Problem: did you choose well?

• Reasoning
 – Prove that all objects of the type satisfy the rep invariant
 – Sometimes easier than testing, sometimes harder
 – Every good programmer uses it as appropriate
All possible objects (and values) of a type

• Make a new object
 – constructors
 – producers

• Modify an existing object
 – mutators
 – observers, producers (why?)

• Limited number of operations, but infinitely many objects
 – Maybe infinitely many values as well
Examples of making objects

Infinitely many possibilities
We cannot perform a proof that considers each possibility case-by-case
Solution: induction

Induction: technique for proving infinitely many facts using finitely many proof steps

For constructors (“basis step”)
 Prove the property holds on exit

For all other methods (“inductive step”)
 Prove that:
 if the property holds on entry, then it holds on exit

If the basis and inductive steps are true:
 There is no way to make an object for which the property does not hold
 Therefore, the property holds for all objects
A counter class

// spec field: count
// abstract invariant: count \geq 0
class Counter {
 // counts up starting from 0
 Counter();
 // returns a copy of this counter
 Counter clone();
 // increments the value that this represents:
 // count_{post} = count_{pre} + 1
 void increment();
 // returns count
 BigInteger getValue();
}

Is the abstract invariant satisfied by these method specs?
Proof by contradiction: where was the invariant first violated?
Inductive proof

• Base case: invariant is satisfied by constructor

• Inductive case:
 – If invariant is satisfied on entry to clone, then invariant is satisfied on exit
 – If invariant is satisfied on entry to increment, then invariant is satisfied on exit
 – If invariant is satisfied on entry to getValue, then invariant is satisfied on exit

• Conclusion: invariant is always satisfied
Inductive proof that \(x+1 > x \)

ADT: the natural numbers (non-negative integers)
- constructor: 0 (zero)
- producer: succ (successor: \(\text{succ}(x) = x+1 \))
- mutators: none
- observers: value

Axioms:
1. \(\text{succ}(0) > 0 \)
2. \(\text{succ}(i) > \text{succ}(j) \) \(\iff \) \(i > j \)

Goal: prove that for all natural numbers \(x \), \(\text{succ}(x) > x \)

Possibilities for \(x \):
- 1. \(x \) is 0
 - \(\text{succ}(0) > 0 \) \hspace{1cm} \text{axiom #1}
- 2. \(x \) is \(\text{succ}(y) \) for some \(y \)
 - \(\text{succ}(y) > y \) \hspace{1cm} \text{assumption}
 - \(\text{succ}(\text{succ}(y)) > \text{succ}(y) \) \hspace{1cm} \text{axiom #2}
 - \(\text{succ}(x) > x \) \hspace{1cm} \text{def of } x = \text{succ}(y)
Outline for remainder of lecture

1. Prove that rep invariant is satisfied
2. Prove that client code behaves correctly
 (Assuming that the implementation is correct)
CharSet abstraction

// Overview: A CharSet is a finite mutable set of chars.
// effects: creates a fresh, empty CharSet
public CharSet ()
 // modifies: this
 // effects: this_{post} = this_{pre} U \{c\}
 public void insert (char c);
 // modifies: this
 // effects: this_{post} = this_{pre} - \{c\}
 public void delete (char c);
 // returns: (c \in\ this)
 public boolean member (char c);
 // returns: cardinality of this
 public int size ();
Implementation of CharSet

// Rep invariant: elts has no nulls and no duplicates
List<Character> elts;

class CharSet {
 List<Character> elts;

class CharSet() {
 elts = new ArrayList<Character>();
}

class void delete(char c) {
 elts.remove(new Character (c));
}

class void insert(char c) {
 if (! member(c))
 elts.add(new Character(c));
}

class boolean member(char c) {
 return elts.contains(new Character(c));
}
...
Proof of CharSet representation invariant

Rep invariant: elts has no nulls and no duplicates

Base case: constructor

```java
public CharSet() {
    elts = new ArrayList<Character>();
}
```

This satisfies the rep invariant

Inductive step:

For each other operation:

- Assume rep invariant holds before the operation
- Prove rep invariant holds after the operation
Inductive step, \texttt{member}

Rep invariant: elts has no nulls and no duplicates

\begin{verbatim}
public boolean member(char c) {
 return elts.contains(new Character(c));
}
\end{verbatim}

c\texttt{contains} doesn’t change \texttt{elts}, so neither does \texttt{member}.
Conclusion: rep invariant is preserved.

Why do we even need to check \texttt{member}?
After all, the specification says that it does not mutate set.
Reasoning must account for all possible arguments
It’s best not to involve the specific values in the proof
Inductive step, delete

Rep invariant: elts has no nulls and no duplicates

```java
public void delete(char c) {
    elts.remove(new Character(c));
}
```

List.remove has two behaviors:

– leaves elts unchanged, or
– removes an element.

Rep invariant can only be made false by adding elements. Conclusion: rep invariant is preserved.
Inductive step, *insert*

Rep invariant: elts has no nulls and no duplicates

```java
public void insert(char c) {
    if (! this.member(c))
        elts.add(new Character(c));
}
```

If \(c\) is in \(\text{elts}_{\text{pre}}\):
- \(\text{elts}\) is unchanged \(\Rightarrow\) rep invariant is preserved

If \(c\) is not in \(\text{elts}_{\text{pre}}\):
- new element is not null or a duplicate \(\Rightarrow\) rep invariant is preserved
Reasoning about mutations to the rep

Inductive step must consider all possible changes to the rep

A possible source of changes: representation exposure

If the proof does not account for this, then the proof is invalid

An important reason to protect the rep:

Compiler can help verify that there are no external changes
Induction for reasoning about uses of ADTs

• Induction on specification, not on code
• Abstract values (e.g., specification fields) may differ from concrete representation
• Can ignore observers, since they do not affect abstract state
 – How do we know that?
• Axioms
 – specs of operations
 – axioms of types used in overview parts of specifications
LetterSet (case-insensitive character set)

// A LetterSet is a mutable finite set of characters.
// No LetterSet contains two chars with the same lower-case representation.

// **effects**: creates an empty LetterSet
public LetterSet ();

// Insert c if this contains no other char with same lower-case representation.
// **modifies**: this
// **effects**: this$_{\text{post}}$ = if (∃c$_1$ ∈ this$_{\text{pre}}$ s.t. toLowerCase(c$_1$) = toLowerCase(c))
// then this$_{\text{pre}}$
// else this$_{\text{pre}}$ U {c}
public void insert (char c);

// **modifies**: this
// **effects**: this$_{\text{post}}$ = this$_{\text{pre}}$ - {c}
public void delete (char c);

// **returns**: (c ∈ this)
public boolean member (char c);

// **returns**: |this|
public int size ();
Goal: prove that a large enough LetterSet contains two different letters

Prove: $|S| > 1 \Rightarrow (\exists c_1, c_2 \in S \ [\text{toLowerCase}(c_1) \neq \text{toLowerCase}(c_2)])$

How might S have been made?

```
constructor  \rightarrow  S
T  \xrightarrow{T.insert(c)}  S
```

```
constructor  \rightarrow  S
T  \xrightarrow{T.insert(c)}  S = T
Base case
```

```
constructor  \rightarrow  S
T  \xrightarrow{T.insert(c)}  S = T \cup \{c\}
Inductive case #2
```

```
T  \xrightarrow{T.insert(c)}  S = T \cup \{c\}
Inductive case #1
```
Goal: prove that a large enough LetterSet contains two different letters

Prove: $|S| > 1 \Rightarrow (\exists c_1, c_2 \in S \ [\text{toLowerCase}(c_1) \neq \text{toLowerCase}(c_2)])$

Two possibilities for how S was made: by the constructor, or by `insert`

Base case: $S = \{\}$, (S was made by the constructor):
 - property holds (vacuously true)

Inductive case (S was made by a call of the form “$T.insert(c)$”):
 Assume: $|T| > 1 \Rightarrow (\exists c_3, c_4 \in T \ [\text{toLowerCase}(c_3) \neq \text{toLowerCase}(c_4)])$
 Show: $|S| > 1 \Rightarrow (\exists c_1, c_2 \in S \ [\text{toLowerCase}(c_1) \neq \text{toLowerCase}(c_2)])$

where $S = T.insert(c)$

 = “if (\exists c_5 \in T \text{ s.t. toLowerCase}(c_5) = \text{toLowerCase}(c))
 \text{then } T \text{ else } T \cup \{c\}”

The value for S came from the specification of insert, applied to $T.insert(c)$:

// modifies: this
// effects: this _post = if (\exists c \in S \text{ s.t. toLowerCase}(c) = \text{toLowerCase}(c))
 \text{then } this _pre
 \text{else } this _pre U \{c\}

public void insert (char c);

(Inductive case is continued on the next slide.)
Goal: a large enough LetterSet contains two different letters.

Inductive case: \(S = T.\text{insert}(c) \)

Goal (from previous slide):
Assume: \(|T| > 1 \Rightarrow (\exists c_3, c_4 \in T \ [\text{toLowerCase}(c_3) \neq \text{toLowerCase}(c_4)])\)

Show: \(|S| > 1 \Rightarrow (\exists c_1, c_2 \in S \ [\text{toLowerCase}(c_1) \neq \text{toLowerCase}(c_2)])\)

where \(S = T.\text{insert}(c) \)

\[= \text{“if } (\exists c_5 \in T \ \text{s.t. } \text{toLowerCase}(c_5) = \text{toLowerCase}(c)) \ \text{then } T \ \text{else } T \cup \{c\} \text{”} \]

Consider the two possibilities for \(S \) (from “if ... then \(T \) else \(T \cup \{c\} \)):

1. If \(S = T \), the theorem holds by induction hypothesis (The assumption above)

2. If \(S = T \cup \{c\} \), there are three cases to consider:
 - \(|T| = 0\): Vacuous case, since hypothesis of theorem (“\(|S| > 1\)”) is false
 - \(|T| \geq 1\): We know that \(T \) did not contain a char of toLowerCase(h), so the theorem holds by the meaning of union
 - Bonus: \(|T| > 1\): By inductive assumption, \(T \) contains different letters, so by the meaning of union, \(T \cup \{c\} \) also contains different letters
Conclusion

The goal is correct code
A proof is a powerful mechanism for ensuring correctness
Formal reasoning is required if debugging is hard
Inductive proofs are the most effective in computer science

Types of proofs:
• Verify that rep invariant is satisfied
• Verify that the implementation satisfies the spec
• Verify that client code behaves correctly