Procedure specifications

CSE 331
Outline

• Satisfying a specification; substitutability
• Stronger and weaker specifications
 – Comparing by hand
 – Comparing via logical formulas
 – Comparing via transition relations
 • Full transition relations
 • Abbreviated transition relations
• Specification style; checking preconditions
Satisfaction of a specification

• Let P be an implementation and S a specification
• \textit{P satisfies S} iff
 – Every behavior of P is permitted by S
 – “The behavior of P is a subset of S”
• The statement “P is correct” is meaningless
 – Though often made!
• If P does not satisfy S, either (or both!) could be “wrong”
 – “One person’s feature is another person’s bug.”
 – It’s usually better to change the program than the spec
Why compare specifications?

We wish to compare procedures to specifications
 – Does the procedure satisfy the specification?
 – Has the implementer succeeded?

We wish to compare specifications to one another
 – Which specification (if either) is stronger?
 – A procedure satisfying a stronger specification can be used anywhere that a weaker specification is required
A specification denotes a set of procedures

Some set of procedures satisfies a specification

Suppose a procedure takes an integer as an argument

Spec 1: “returns an integer ≥ its argument”
Spec 2: “returns a non-negative integer ≥ its argument”
Spec 3: “returns argument + 1”
Spec 4: “returns argument^2”
Spec 5: “returns Integer.MAX_VALUE”

Consider these implementations:

<table>
<thead>
<tr>
<th>Code</th>
<th>Spec1</th>
<th>Spec2</th>
<th>Spec3</th>
<th>Spec4</th>
<th>Spec5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Code 1: `return arg * 2;`
Code 2: `return abs(arg);`
Code 3: `return arg + 5;`
Code 4: `return arg * arg;`
Code 5: `return Integer.MAX_VALUE;`
Specification strength and substitutability

• A stronger specification promises more
 – It constrains the implementation more
 – The client can make more assumptions

• Substitutability
 – A stronger specification can always be substituted for a weaker one
Procedure specifications

Example of a procedure specification:

// requires i > 0
// modifies nothing
// returns true iff i is a prime number
public static boolean isPrime (int i)

General form of a procedure specification:

// requires
// modifies
// throws
// effects
// returns
How to compare specifications

Three ways to compare

1. By hand; examine each clause
2. Logical formulas representing the specification
3. Transition relations
 a) Full transition relations
 b) Abbreviated transition relations

Use whichever is most convenient
Technique 1: Comparing by hand

We can **weaken** a specification by

Making **requires** harder to satisfy (**strengthening requires**)

Preconditions are **contravariant** (all other clauses are **covariant**)

Adding things to **modifies** clause (**weakening modifies**)

Making **effects** easier to satisfy (**weakening effects**)

Guaranteeing less about **throws** (**weakening throws**)

Guaranteeing less about **returns** value (**weakening returns**)

The **strongest** (most constraining) spec has the following:

- **requires** clause: true
- **modifies** clause: nothing
- **effects** clause: false
- **throws** clause: nothing
- **returns** clause: false

(This particular spec is so strong as to be useless.)
Technique 2: Comparing logical formulas

Specification S1 is stronger than S2 iff:
\[\forall P, (P \text{ satisfies } S1) \Rightarrow (P \text{ satisfies } S2) \]

If each specification is a logical formula, this is equivalent to:
\[S1 \Rightarrow S2 \]

So, convert each spec to a formula (in 2 steps, see following slides)

This specification:

// requires R
// modifies M
// effects E

is equivalent to this single logical formula:

\[R \Rightarrow (E \land (\text{nothing but } M \text{ is modified})) \]

What about throws and returns? Absorb them into effects.

Final result: S1 is stronger than S2 iff

\[(R_1 \Rightarrow (E_1 \land \text{only-modifies-}M_1)) \Rightarrow (R_2 \Rightarrow (E_2 \land \text{only-modifies-}M_2)) \]
Convert spec to formula, step 1: absorb **throws**, **returns**

CSE 331 style:
- requires (unchanged)
- modifies (unchanged)
- throws
- effects
- returns

} correspond to resulting "effects"

Example (from `java.util.ArrayList<T>`):
```
// requires: true
// modifies: this[index]
// throws: IndexOutOfBoundsException if index < 0 || index ≥ size()
// effects: this_post[index] = element
// returns: this_pre[index]
T set(int index, T element)
```

Equivalent spec, after absorbing **throws** and **returns** into **effects**:
```
// requires: true
// modifies: this[index]
// **effects**: if index < 0 || index ≥ size() then throws IndexOutOfBoundsException
//             else this_post[index] = element && returns this_pre[index]
T set(int index, T element)
```
Convert spec to formula, step 2: eliminate **requires, modifies**

Single logical formula

\[
\text{requires } \Rightarrow (\text{effects } \land (\text{not-modified}))
\]

“not-modified” preserves every field not in the modifies clause

Logical fact: If precondition is false, formula is true

Recall: \(\forall x. x \Rightarrow true; \forall x. false \Rightarrow x; (x \Rightarrow y) \equiv (\neg x \lor y) \)

Example:

// requires: true
// modifies: this[index]
// effects: E
T set(int index, T element)

Result:

true \Rightarrow (E \land (∀i\neq index. this_{\text{pre}}[i] = this_{\text{post}}[i]))
Technique 3: Comparing transition relations

Transition relation relates **prestates** to **poststates**
Contains all possible \(\langle\text{input, output}\rangle\) pairs

Transition relation maps procedure arguments to results

```java
int increment(int i) { 
    return i+1;
}
```

```java
double mySqrt(double a) { 
    if (Random.nextBoolean())
        return Math.sqrt(a);
    else
        return - Math.sqrt(a);
}
```

A specification has a transition relation, too
Contains just as much information as other forms of specification
Satisfaction via transition relations

A **stronger** specification has a **smaller** transition relation

Rule: \(P \) satisfies \(S \) iff \(P \) is a subset of \(S \)

(when both are viewed as transition relations)

sqrt specification (\(S_{sqrt} \))

// requires \(x \) is a perfect square
// returns positive or negative square root
int sqrt (int \(x \))

Transition relation: \(\langle 0,0 \rangle, \langle 1,1 \rangle, \langle 1,-1 \rangle, \langle 4,2 \rangle, \langle 4,-2 \rangle, \ldots \)

sqrt code (\(P_{sqrt} \))

int sqrt (int \(x \)) {
 // ... always returns positive square root
}

Transition relation: \(\langle 0,0 \rangle, \langle 1,1 \rangle, \langle 4,2 \rangle, \ldots \)

\(P_{sqrt} \) satisfies \(S_{sqrt} \) because \(P_{sqrt} \) is a subset of \(S_{sqrt} \)
Beware transition relations in abbreviated form

“P satisfies S iff P is a subset of S” is a good rule
But it gives the wrong answer for transition relations in abbreviated form
(The transition relations we have seen so far are in abbreviated form!)

anyOdd specification (S_{anyOdd})
\[
\begin{array}{l}
// \text{ requires } x = 0 \\
// \text{ returns any odd integer} \\
\text{int anyOdd (int x)}
\end{array}
\]

Abbreviated transition relation: $\langle 0,1 \rangle, \langle 0,3 \rangle, \langle 0,5 \rangle, \langle 0,7 \rangle, \ldots$

anyOdd code (P_{anyOdd})
\[
\begin{array}{l}
\text{int anyOdd (int x) } \\
\quad \text{return 3;}
\end{array}
\]

Transition relation: $\langle 0,3 \rangle, \langle 1,3 \rangle, \langle 2,3 \rangle, \langle 3,3 \rangle, \ldots$

The code satisfies the specification, but the rule says it does not

P_{anyOdd} is not a subset of S_{anyOdd}
because $\langle 1,3 \rangle$ is not in the specification’s transition relation

We will see two solutions to this problem: full or abbreviated transition relations
Satisfaction via full transition relations (option 1)

The transition relation should make explicit everything an implementation may do

Problem: abbreviated transition relation for S does not indicate all possibilities

anyOdd specification (S_{anyOdd}):

// requires $x = 0$
// returns any odd integer

```cpp
int anyOdd (int x) {
    return 3;
}
```

Full transition relation: \(\langle 0,1 \rangle, \langle 0,3 \rangle, \langle 0,5 \rangle, \langle 0,7 \rangle, \ldots\) \hspace{1cm} // on previous slide
\(\langle 1,0 \rangle, \langle 1,1 \rangle, \langle 1,2 \rangle, \ldots, \langle 1,\text{exception} \rangle, \langle 1,\text{infinite loop} \rangle, \ldots\) \hspace{1cm} // new
\(\langle 2,0 \rangle, \langle 2,1 \rangle, \langle 2,2 \rangle, \ldots, \langle 2,\text{exception} \rangle, \langle 2,\text{infinite loop} \rangle, \ldots\) \hspace{1cm} // new

anyOdd code (P_{anyOdd}):

```cpp
int anyOdd (int x) {
    return 3;
}
```

Transition relation: \(\langle 0,3 \rangle, \langle 1,3 \rangle, \langle 2,3 \rangle, \langle 3,3 \rangle, \ldots\) \hspace{1cm} // same as before

The rule “P satisfies S iff P is a subset of S” gives the right answer for full relations

Downside: writing the full transition relation is bulky and inconvenient

It’s more convenient to make the implicit notational assumption:

For elements not in the domain of S, any behavior is permitted.

(Recall that a relation maps a domain to a range.)
Satisfaction via abbreviated transition relations (option 2)

New rule: P satisfies S iff P | (Domain of S) is a subset of S
where “P | D” = “P restricted to the domain D”
i.e., remove from P all pairs whose first member is not in D
(recall that a relation maps a domain to a range)

anyOdd specification (S_{anyOdd})
// requires x = 0
// returns any odd integer
int anyOdd (int x)

Abbreviated transition relation: <0,1>, <0,3>, <0,5>, <0,7>, …

anyOdd code (P_{anyOdd})
int anyOdd (int x) {
 return 3;
}

Transition relation: <0,3>, <1,3>, <2,3>, <3,3>, …

Domain of S = { 0 }
P | (domain of S) = <0,3>, which is a subset of S, so P satisfies S
The new rule gives the right answer even for abbreviated transition relations
We’ll use this version of the notation in CSE 331
Abbreviated transition relations, summary

True transition relation:
 Contains all the pairs, all comparisons work
 Bulky to read and write

Abbreviated transition relation
 Shorter and more convenient
 Naively doing comparisons leads to wrong result

How to do comparisons:
 Use the expanded transition relation, or
 Restrict the domain when comparing

Either approach makes the “smaller is stronger rule” work
Review: strength of a specification

A stronger specification is satisfied by fewer procedures
A stronger specification has
 – weaker preconditions (note contravariance)
 – stronger postcondition
 – fewer modifications

 Advantage of this view: can be checked by hand
A stronger specification has a (logically) stronger formula

 Advantage of this view: mechanizable in tools
A stronger specification has a smaller transition relation

 Advantage of this view: captures intuition of “stronger = smaller” (fewer choices)
Specification style

A procedure has a side effect or is called for its value
 Bad style to have both effects and returns
 Exception: return old value, as for `HashMap.put`

The point of a specification is to be helpful
 Formalism helps, overformalism doesn't

A specification should be
 – coherent: not too many cases
 – informative: bad example: `HashMap.get`
 – strong enough: to do something useful, to make guarantees
 – weak enough: to permit (efficient) implementation
Checking preconditions

– makes an implementation more robust
– provides better feedback to the client
– avoids silent errors

A quality implementation checks preconditions whenever it is *inexpensive* and *convenient* to do so