
1

CSE 331

SOFTWARE DESIGN &

IMPLEMENTATION

USABILITY

Autumn 2011

Much due to Rob Miller

This lecture is FYI: the

material will not be

covered on the final

What’s wrong?

 Usability is about creating effective user interfaces

 The first slide shows a WYSIWYG GUI – but it still fails
– why?

 The long help message is needed for a simple task
because the interface is bizarre!
 The scrollbar is used to select an award template

 Each position on the scrollbar represents a template, and
moving the scrollbar back and forth changes the template
shown

 Cute but bad use of a scrollbar

 How many templates? No indication on scrollbar

 How are the templates organized? No hint

CSE 331 Autumn 2011

2

User Interface Hall of Shame

 Inconsistent with

common usage

of scrollbars –

usually used for

continuous

scrolling, not

discrete

selection

 How does a

frequent user

find a template

they’ve used

before?

3

Source: Interface Hall of Shame

Redesigning the Interface
4

Source: Interface Hall of Shame

Another for the Hall of Shame
5

Source: Interface Hall of Shame

 The date and time look editable

but aren’t – click “Set Time” for a

dialog box instead

 Dialog box displays inconsistently

with launch time – 12 vs. 24, analog

vs. digital

 Click left [right] button to increase

the minutes [hours] by 1 – makes a

sophisticated GUI into a clock radio! Launches housekeeping tasks

at scheduled intervals

User Interfaces Are Hard to Design

 You are not the user

 Most software engineering is about communicating with

other programmers

 UI is about communicating with users

 The user is always right

 Consistent problems are the system’s fault

 …but the user is not always right

 Users aren’t designers

6

2

7

Iterative Design

 UI development is an iterative process

 Iterations can be costly – but the benefits can be high

 If the design turns out to be bad, you may have to throw

away most of your code

Design

Implement Evaluate

8

Spiral Model

 Use throw-away prototypes and cheap evaluation

for early iterations

Design

Implement Evaluate

9

Usability Defined

 Usability: how well users can use the system

 Dimensions of usability

 Learnability: is it easy to learn?

 Efficiency: once learned, is it fast to use?

 Memorability: is it easy to remember what you

learned?

 Errors: are errors few and recoverable?

 Satisfaction: is it enjoyable to use?

10

Lecture Outline

1. Design

2. Implement 3. Evaluate

design principles

low-fidelity prototypes user testing

Learnability
11

 Related to “intuitive”

and “user-friendly”

 The first example had

serious problems with

learnability, especially

with the scrollbar

 Unfamiliar usage

 Inconsistent usage

 And outright

inappropriate usage

Metaphorical Design

 Designers based it on a real-world plastic CD

case

 Metaphors are one way to make an interface

“intuitive,” since users can make guesses about

how it will work

 Dominated by static artwork – clicking it does

nothing

 Why? A CD case doesn’t actually play CDs,

ao the designers had to find a place for the

core player controls

 The metaphor is dictating control layout,

against all other considerations

 Also disregards consistency with other

desktop applications. Close box? Shut it

down?

12

Source: Interface Hall of Shame

3

People Don't Learn Instantly

 To design for learnability it helps to know how people actually learn

 This example shows overreliance on the user’s memory

 It’s a modal dialog box, so the user needs to click OK

 But then the instructions vanish from the screen, and the user is left

to struggle to remember them

 Just because you've said it, doesn't mean they know it

13

Source: Interface Hall of Shame

Facts About Memory & Learning

 Working memory

 Small: 7 ± 2 “chunks”

 Short-lived: gone in ~10 sec

 Maintenance rehearsal is required to keep it from

decaying (but costs attention)

 Long-term memory

 Practically infinite in size and duration

 Elaborative rehearsal transfers chunks to long-term

memory

14

Long-term
Memory

Working
Memory

Design Principles for Learnability

 Consistency

 Similar things look similar,

different things different

 Terminology, location,

argument order, ...

 Internal, external, metaphorical

 Match the real world

 Common words, not tech jargon

 Recognition, not recall

 Labeled buttons are better than command languages

 Combo boxes are better than text boxes

15

Source: Interface Hall of Shame

Visibility

 Familiar, easy to use

 But passes up some tremendous

opportunities, including

 Why only one line of display? Why not a history?

 Why only one memory slot? Why display “M” instead of

the actual number stored in memory?

 Visibility also compromised by invisible modes

 When entering a number, pressing a digit appends it to the

number; but after pressing an operator button, the next digit

starts a new number – no visible feedback the low-level mode

 It also lets you type numbers on the keyboard, but there is no

hint about this

16

17

Feedback

18

Facts About Human Perception

 Perceptual fusion: stimuli < 100ms apart appear

fused to our perceptual systems

 10 frames/sec is enough to perceive a moving picture

 Computer response < 100 ms feels instantaneous

 Color blindness: many users (~8% of all males) can't

distinguish red from green

normal vision red-green deficient

4

Design Principles for Visibility

 Make system state visible: keep the user informed

about what's going on

 Mouse cursor, selection highlight, status bar

 Give prompt feedback – response time rules-of-

thumb

 < 0.1 sec seems instantaneous

 0.1-1 sec user notices, but no feedback needed

 1-5 sec display busy cursor

 > 1-5 sec display progress bar

19

Efficiency

 How quickly can an expert

operate the system – input,

commands, perceiving and

processing output

 About the performance of the

I/O channel between the user

and the program

 Fewer keystrokes to do a task is

usually more efficient; but it’s

subtle

 The Gimp interface uses only

contextual, cascading submenus

– studies show it’s actually

slower to use than a menu bar

20

21

Some Facts About Motor Processing

 Open-loop control

 Motor processor runs by itself

 Cycle time is ~ 70 ms

 Closed-loop control

 Muscle movements (or their effect on the world) are

perceived and compared with desired result

 Cycle time is ~ 240 ms

Senses Perceptual Cognitive Motor Muscles

Feedback

Pointing Tasks: Fitts’s Law

 How long does it take to reach a target?

 Moving mouse to target on screen

 Moving finger to key on keyboard

 Moving hand between keyboard and mouse

22

D

S

Design Principles for Efficiency

 Fitts's Law and Steering Law (constrained

movement)

 Make important targets big, nearby, or at screen

edges

 Avoid steering tasks

 Provide shortcuts

 Keyboard accelerators

 Styles

 Bookmarks

 History

23

Source: Interface Hall of Shame

Mode Error

 Modes: states in which actions have different

meanings

 Vi’s insert mode vs. command mode

 Drawing palette

 Reducing mode errors

 Eliminate modes entirely

 Visibility of mode

 Disjoint action sets in different modes

24

5

Confirmation Dialogs: “Are you sure?”

 They make common
operations take two button
presses rather than one

 Frequent confirmations
dialogs lead to expert
users chunking it as part of
the operation

 Reversibility (i.e. undo) is a
far better solution than
confirmation – operations
that are very hard to
reverse may deserve
confirmation, however

25 26

Design Principles for Error Handling

 Prevent errors as much as possible
 Selection is better than typing

 Reduce mode errors

 Disable illegal commands

 Separate risky commands from common ones

 Use confirmation dialogs sparingly

 Support undo

 Good error messages
 Precise

 Speak the user’s language

 Constructive help

 Polite
Source: Interface Hall of Shame

27

Simplicity

Source: Alex Papadimoulis

28

Simplicity

Design Principles for Simplicity

 “Less is More”

 Omit extraneous information, graphics, features

 Good graphic design

 Few, well-chosen colors and fonts

 Group with whitespace

 Use concise language

 Choose labels carefully

29

Document your system

 Write the user manual

 Program and UI metaphors

 Key functionality

 Not: exhaustive list of all menus

 What is hard to describe?

 Who is your target user?

 Power users need a manual

 Casual users might not

 Piecemeal online help is no substitute

30

6

31

Lecture Outline

1. Design

2. Implement 3. Evaluate

design principles

low-fidelity prototypes user testing

32

Low-fidelity Prototypes

 Paper is a very fast and effective prototyping tool

 Sketch windows, menus, dialogs, widgets

 Crank out lots of designs and evaluate them

 Hand-sketching is OK – even preferable

 Focus on behavior & interaction, not fonts & colors

 Similar to design of your data structures & algorithms

 Paper prototypes can even be executed

 Use pieces to represent windows, dialogs, menus

 Simulate the computer’s responses by moving pieces around

and writing on them

33

Paper Prototypes
34

Paper Prototypes

35

Paper Prototypes User Testing

 Start with a prototype

 Write up a few representative tasks

 Short, but not trivial

 e.g.: “add this meeting to calendar”,

 “type this letter and print it”

 Find a few representative users

 Three is often enough to find obvious problems

 Watch them do tasks with the prototype

36

7

How to Watch Users

 Brief the user first (being a test user is stressful)

 “I’m testing the system, not testing you”

 “If you have trouble, it’s the system’s fault”

 “Feel free to quit at any time”

 Ethical issues: informed consent

 Ask user to think aloud

 Be quiet!

 Don’t help, don’t explain, don’t point out mistakes

 Sit on your hands if it helps

 Two exceptions: prod user to think aloud (“what are you thinking
now?”), and move on to next task when stuck

 Take lots of notes

37

Watch for Critical Incidents

 Critical incidents: events that strongly affect task

performance or satisfaction

 Usually negative

 Errors

 Repeated attempts

 Curses

 Can also be positive

 “Cool!”

 “Oh, now I see.”

38

Summary

 You are not the user

 Keep human capabilities and design principles in

mind

 Iterate over your design

 Write documentation

 Make cheap, throw-away prototypes

 Evaluate them with users

39

Further Reading

 General books on usability
 Johnson. GUI Bloopers: Don’ts and Dos for Software

Developers and Web Designers, Morgan Kaufmann, 2000.

 Jef Raskin, The Humane Interface, Addison-Wesley 2000.

 Hix & Hartson, Developing User Interfaces, Wiley 1995.

 Low-fidelity prototyping
 Rettig, “Prototyping for Tiny Fingers”, CACM April 1994.

 Usability heuristics
 Nielsen, “Heuristic Evaluation.”

http://www.useit.com/papers/heuristic/

 Tognazzini, “First Principles.”
http://www.asktog.com/basics/firstPrinciples.html

40

Next steps

CSE 331 Autumn 2011

41

 Monday: UML; Wednesday: TBA

 A5 and A6

CSE 331 Autumn 2011 42

http://www.useit.com/papers/heuristic/
http://www.asktog.com/basics/firstPrinciples.html

