
1

CSE 331

SOFTWARE DESIGN &

IMPLEMENTATION

USABILITY

Autumn 2011

Much due to Rob Miller

This lecture is FYI: the

material will not be

covered on the final

What’s wrong?

 Usability is about creating effective user interfaces

 The first slide shows a WYSIWYG GUI – but it still fails
– why?

 The long help message is needed for a simple task
because the interface is bizarre!
 The scrollbar is used to select an award template

 Each position on the scrollbar represents a template, and
moving the scrollbar back and forth changes the template
shown

 Cute but bad use of a scrollbar

 How many templates? No indication on scrollbar

 How are the templates organized? No hint

CSE 331 Autumn 2011

2

User Interface Hall of Shame

 Inconsistent with

common usage

of scrollbars –

usually used for

continuous

scrolling, not

discrete

selection

 How does a

frequent user

find a template

they’ve used

before?

3

Source: Interface Hall of Shame

Redesigning the Interface
4

Source: Interface Hall of Shame

Another for the Hall of Shame
5

Source: Interface Hall of Shame

 The date and time look editable

but aren’t – click “Set Time” for a

dialog box instead

 Dialog box displays inconsistently

with launch time – 12 vs. 24, analog

vs. digital

 Click left [right] button to increase

the minutes [hours] by 1 – makes a

sophisticated GUI into a clock radio! Launches housekeeping tasks

at scheduled intervals

User Interfaces Are Hard to Design

 You are not the user

 Most software engineering is about communicating with

other programmers

 UI is about communicating with users

 The user is always right

 Consistent problems are the system’s fault

 …but the user is not always right

 Users aren’t designers

6

2

7

Iterative Design

 UI development is an iterative process

 Iterations can be costly – but the benefits can be high

 If the design turns out to be bad, you may have to throw

away most of your code

Design

Implement Evaluate

8

Spiral Model

 Use throw-away prototypes and cheap evaluation

for early iterations

Design

Implement Evaluate

9

Usability Defined

 Usability: how well users can use the system

 Dimensions of usability

 Learnability: is it easy to learn?

 Efficiency: once learned, is it fast to use?

 Memorability: is it easy to remember what you

learned?

 Errors: are errors few and recoverable?

 Satisfaction: is it enjoyable to use?

10

Lecture Outline

1. Design

2. Implement 3. Evaluate

design principles

low-fidelity prototypes user testing

Learnability
11

 Related to “intuitive”

and “user-friendly”

 The first example had

serious problems with

learnability, especially

with the scrollbar

 Unfamiliar usage

 Inconsistent usage

 And outright

inappropriate usage

Metaphorical Design

 Designers based it on a real-world plastic CD

case

 Metaphors are one way to make an interface

“intuitive,” since users can make guesses about

how it will work

 Dominated by static artwork – clicking it does

nothing

 Why? A CD case doesn’t actually play CDs,

ao the designers had to find a place for the

core player controls

 The metaphor is dictating control layout,

against all other considerations

 Also disregards consistency with other

desktop applications. Close box? Shut it

down?

12

Source: Interface Hall of Shame

3

People Don't Learn Instantly

 To design for learnability it helps to know how people actually learn

 This example shows overreliance on the user’s memory

 It’s a modal dialog box, so the user needs to click OK

 But then the instructions vanish from the screen, and the user is left

to struggle to remember them

 Just because you've said it, doesn't mean they know it

13

Source: Interface Hall of Shame

Facts About Memory & Learning

 Working memory

 Small: 7 ± 2 “chunks”

 Short-lived: gone in ~10 sec

 Maintenance rehearsal is required to keep it from

decaying (but costs attention)

 Long-term memory

 Practically infinite in size and duration

 Elaborative rehearsal transfers chunks to long-term

memory

14

Long-term
Memory

Working
Memory

Design Principles for Learnability

 Consistency

 Similar things look similar,

different things different

 Terminology, location,

argument order, ...

 Internal, external, metaphorical

 Match the real world

 Common words, not tech jargon

 Recognition, not recall

 Labeled buttons are better than command languages

 Combo boxes are better than text boxes

15

Source: Interface Hall of Shame

Visibility

 Familiar, easy to use

 But passes up some tremendous

opportunities, including

 Why only one line of display? Why not a history?

 Why only one memory slot? Why display “M” instead of

the actual number stored in memory?

 Visibility also compromised by invisible modes

 When entering a number, pressing a digit appends it to the

number; but after pressing an operator button, the next digit

starts a new number – no visible feedback the low-level mode

 It also lets you type numbers on the keyboard, but there is no

hint about this

16

17

Feedback

18

Facts About Human Perception

 Perceptual fusion: stimuli < 100ms apart appear

fused to our perceptual systems

 10 frames/sec is enough to perceive a moving picture

 Computer response < 100 ms feels instantaneous

 Color blindness: many users (~8% of all males) can't

distinguish red from green

normal vision red-green deficient

4

Design Principles for Visibility

 Make system state visible: keep the user informed

about what's going on

 Mouse cursor, selection highlight, status bar

 Give prompt feedback – response time rules-of-

thumb

 < 0.1 sec seems instantaneous

 0.1-1 sec user notices, but no feedback needed

 1-5 sec display busy cursor

 > 1-5 sec display progress bar

19

Efficiency

 How quickly can an expert

operate the system – input,

commands, perceiving and

processing output

 About the performance of the

I/O channel between the user

and the program

 Fewer keystrokes to do a task is

usually more efficient; but it’s

subtle

 The Gimp interface uses only

contextual, cascading submenus

– studies show it’s actually

slower to use than a menu bar

20

21

Some Facts About Motor Processing

 Open-loop control

 Motor processor runs by itself

 Cycle time is ~ 70 ms

 Closed-loop control

 Muscle movements (or their effect on the world) are

perceived and compared with desired result

 Cycle time is ~ 240 ms

Senses Perceptual Cognitive Motor Muscles

Feedback

Pointing Tasks: Fitts’s Law

 How long does it take to reach a target?

 Moving mouse to target on screen

 Moving finger to key on keyboard

 Moving hand between keyboard and mouse

22

D

S

Design Principles for Efficiency

 Fitts's Law and Steering Law (constrained

movement)

 Make important targets big, nearby, or at screen

edges

 Avoid steering tasks

 Provide shortcuts

 Keyboard accelerators

 Styles

 Bookmarks

 History

23

Source: Interface Hall of Shame

Mode Error

 Modes: states in which actions have different

meanings

 Vi’s insert mode vs. command mode

 Drawing palette

 Reducing mode errors

 Eliminate modes entirely

 Visibility of mode

 Disjoint action sets in different modes

24

5

Confirmation Dialogs: “Are you sure?”

 They make common
operations take two button
presses rather than one

 Frequent confirmations
dialogs lead to expert
users chunking it as part of
the operation

 Reversibility (i.e. undo) is a
far better solution than
confirmation – operations
that are very hard to
reverse may deserve
confirmation, however

25 26

Design Principles for Error Handling

 Prevent errors as much as possible
 Selection is better than typing

 Reduce mode errors

 Disable illegal commands

 Separate risky commands from common ones

 Use confirmation dialogs sparingly

 Support undo

 Good error messages
 Precise

 Speak the user’s language

 Constructive help

 Polite
Source: Interface Hall of Shame

27

Simplicity

Source: Alex Papadimoulis

28

Simplicity

Design Principles for Simplicity

 “Less is More”

 Omit extraneous information, graphics, features

 Good graphic design

 Few, well-chosen colors and fonts

 Group with whitespace

 Use concise language

 Choose labels carefully

29

Document your system

 Write the user manual

 Program and UI metaphors

 Key functionality

 Not: exhaustive list of all menus

 What is hard to describe?

 Who is your target user?

 Power users need a manual

 Casual users might not

 Piecemeal online help is no substitute

30

6

31

Lecture Outline

1. Design

2. Implement 3. Evaluate

design principles

low-fidelity prototypes user testing

32

Low-fidelity Prototypes

 Paper is a very fast and effective prototyping tool

 Sketch windows, menus, dialogs, widgets

 Crank out lots of designs and evaluate them

 Hand-sketching is OK – even preferable

 Focus on behavior & interaction, not fonts & colors

 Similar to design of your data structures & algorithms

 Paper prototypes can even be executed

 Use pieces to represent windows, dialogs, menus

 Simulate the computer’s responses by moving pieces around

and writing on them

33

Paper Prototypes
34

Paper Prototypes

35

Paper Prototypes User Testing

 Start with a prototype

 Write up a few representative tasks

 Short, but not trivial

 e.g.: “add this meeting to calendar”,

 “type this letter and print it”

 Find a few representative users

 Three is often enough to find obvious problems

 Watch them do tasks with the prototype

36

7

How to Watch Users

 Brief the user first (being a test user is stressful)

 “I’m testing the system, not testing you”

 “If you have trouble, it’s the system’s fault”

 “Feel free to quit at any time”

 Ethical issues: informed consent

 Ask user to think aloud

 Be quiet!

 Don’t help, don’t explain, don’t point out mistakes

 Sit on your hands if it helps

 Two exceptions: prod user to think aloud (“what are you thinking
now?”), and move on to next task when stuck

 Take lots of notes

37

Watch for Critical Incidents

 Critical incidents: events that strongly affect task

performance or satisfaction

 Usually negative

 Errors

 Repeated attempts

 Curses

 Can also be positive

 “Cool!”

 “Oh, now I see.”

38

Summary

 You are not the user

 Keep human capabilities and design principles in

mind

 Iterate over your design

 Write documentation

 Make cheap, throw-away prototypes

 Evaluate them with users

39

Further Reading

 General books on usability
 Johnson. GUI Bloopers: Don’ts and Dos for Software

Developers and Web Designers, Morgan Kaufmann, 2000.

 Jef Raskin, The Humane Interface, Addison-Wesley 2000.

 Hix & Hartson, Developing User Interfaces, Wiley 1995.

 Low-fidelity prototyping
 Rettig, “Prototyping for Tiny Fingers”, CACM April 1994.

 Usability heuristics
 Nielsen, “Heuristic Evaluation.”

http://www.useit.com/papers/heuristic/

 Tognazzini, “First Principles.”
http://www.asktog.com/basics/firstPrinciples.html

40

Next steps

CSE 331 Autumn 2011

41

 Monday: UML; Wednesday: TBA

 A5 and A6

CSE 331 Autumn 2011 42

http://www.useit.com/papers/heuristic/
http://www.asktog.com/basics/firstPrinciples.html

