Reasoning about code

CSE 331
Spring 2010
Reasoning about code

Determine what facts are true during execution

- $x > 0$
- for all nodes n: $n.next.previous == n$
- array a is sorted
- $x + y == z$
- if $x != \text{null}$, then $x.a > x.b$

Applications:

- Ensure code is correct (via reasoning or testing)
- Understand why code is incorrect
Forward reasoning

You know what is true before running the code

What is true after running the code?

Given a precondition, what is the postcondition?

Example:

```
// precondition: x is even
x = x + 3;
y = 2x;
x = 5;
// postcondition: ??
```

Application:

Rep invariant holds before running code

Does it still hold after running code?
Backward reasoning

You know what you want to be true after running the code
 What must be true beforehand in order to ensure that?
Given a postcondition, what is the corresponding precondition?
Example:
 // precondition: ??
 x = x + 3;
 y = 2x;
 x = 5;
 // postcondition: y > x
Application:
 (Re-)establish rep invariant at method exit: what requires?
 Reproduce a bug: what must the input have been?
 Exploit a bug
SQL injection attack

Server code bug: SQL query constructed using unfiltered user input

query = "SELECT * FROM users "
+ "WHERE name='" + userInput + "';";

User inputs: a' or '1'='1

Result:

query ⇒ SELECT * FROM users
WHERE name='a' or '1'='1';

Query returns information about all users

Program logic is supposed to scrub user inputs

Does it?

http://xkcd.com/327/
Forward vs. backward reasoning

Forward reasoning is more intuitive for most people

- Helps you understand what will happen (simulates the code)
- Introduces facts that may be irrelevant to goal
 - Set of current facts may get large
- Takes longer to realize that the task is hopeless

Backward reasoning is usually more helpful

- Helps you understand what should happen
- Given a specific goal, indicates how to achieve it
- Given an error, gives a test case that exposes it
Reasoning about code statements

Goal: Convert assertions about programs into logic

General plan
- Eliminate code a statement at a time
- Rely on knowledge of logic and types

There is a (forward and backward) rule for each statement in the programming language
- Loops have no rule: you have to guess a loop invariant

Jargon: $P \{\text{code}\} Q$
- P and Q are logical statements (about program values)
- \text{code} is Java code

“$P \{\text{code}\} Q$” means “if P is true and you execute \text{code}, then Q is true afterward”

Is this notation good for forward or for backward reasoning?
Forward reasoning example

```java
assert x >= 0;  // x ≥ 0
i = x;          // x ≥ 0 & i = x
z = 0;          // x ≥ 0 & i = x & z = 0
while (i != 0) {
    z = z + 1;  // ???
    i = i - 1;  // ???
}
assert x == z;  // x ≥ 0 & i = 0 & z = x
```

Now, on to **backward** reasoning rules for Java statements
Also known as “weakest precondition”
Assignment

// precondition: ??
x = e;
// postcondition: Q
Precondition = Q with all (free) occurrences of x replaced by e

Examples:

// assert: ??
y = x + 1;
// assert y > 0
Precondition = (x+1) > 0

// assert: ??
z = z + 1;
// assert z > 0
Precondition = (z+1) > 0

Notation: wp for “weakest precondition”
wp("x=e;", Q) = Q with x replaced by e
Method calls

```java
// precondition: ??
x = foo();
// postcondition: Q

If the method has no side effects: just like ordinary assignment
// precondition: ??
// postcondition: x = 22
x = Math.abs(y);
// postcondition: x = 22

If it has side effects: an assignment to every var in modifies
Use the method specification to determine the new value
// precondition: ??
// postcondition: z = 22
incrementZ(); // spec: z_{post} = z_{pre} + 1
// postcondition: z = 22
```
Composition (statement sequences; blocks)

// precondition: ??
S1; // some statement
S2; // another statement

// postcondition: Q

Work from back to front

Postcondition = \wp("S1; S2;", Q) = \wp("S1;", \wp("S2;", Q))

Example:

// precondition: ??
x = 0;
y = x + 1;
// postcondition: y > 0
If statements

// precondition: ??
if (b) S1 else S2
// postcondition: Q

Do case analysis:

wp("if (b) S1 else S2", Q)
= (b ⇒ wp("s1", Q)
 ∧ ¬b ⇒ wp("s2", Q))
= (b ∧ wp("s1", Q)
 ∨ ¬b ∧ wp("s2", Q))

(Note no substitution in the condition.)
If statement example

// precondition: ??
if (x < 5) {
 x = x*x;
} else {
 x = x+1;
}
// postcondition: x ≥ 9

Precondition
= wp("if (x<5) {x = x*x;} else {x = x+1}", x ≥ 9)
= (x < 5 ∧ wp("x=x*x", x ≥ 9)) ∨ (x ≥ 5 ∧ wp("x=x+1", x ≥ 9))
= (x < 5 ∧ x*x ≥ 9) ∨ (x ≥ 5 ∧ x+1 ≥ 9)
= (x ≤ -3) ∨ (x ≥ 3 ∧ x < 5) ∨ (x ≥ 8)
Reasoning about loops

A loop represents an unknown number of paths

Case analysis is problematic
Recursion presents the same issue

Cannot enumerate all paths
What makes testing and reasoning hard
Reasoning about loops: values and termination

// assert x ≥ 0 & y = 0
while (x != y) {
 y = y + 1;
}
// assert x = y

1) Pre-assertion guarantees that x ≥ y
2) Every time through loop
 x ≥ y holds – and if body is entered, x > y
 y is incremented by 1
 x is unchanged
 Therefore, y is closer to x (but x ≥ y still holds)
3) Since there are only a finite number of integers between x and y, y will eventually equal x
4) Execution exits the loop as soon as x = y
Understanding loops by induction

We just made an inductive argument
 Inducting over the number of iterations
Computation induction
 Show that conjecture holds if zero iterations
 Show that it holds after $n+1$ iterations
 (assuming that it holds after n iterations)

Two things to prove
 Some property is preserved (known as “partial correctness”)
 Loop invariant is preserved by each iteration
 The loop completes (known as “termination”)
 The “decrementing function” is reduced by each iteration
How to choose a loop invariant, LI

// assert P
while (b) S;
// assert Q

Find an invariant, LI, such that
1. \(P \Rightarrow LI \) // true initially
2. \(LI \land b \{ S \} LI \) // true if the loop executes once
3. \((LI \land \neg b) \Rightarrow Q \) // establishes the postcondition

It is sufficient to know that if loop terminates, Q will hold

Finding the invariant is the key to reasoning about loops

Inductive assertions is a complete method of proof:

If a loop satisfies pre/post conditions, then there exists an invariant sufficient to prove it
Loop invariant for the example

//assert x ≥ 0 & y = 0
while (x != y) {
 y = y + 1;
}
//assert x = y

A suitable invariant:

\[LI = x \geq y \]

1. \[x \geq 0 \land y = 0 \Rightarrow LI \] // true initially
2. \[LI \land x \neq y \{ y = y + 1; \} LI \] // true if the loop executes once
3. \[(LI \land \neg(x \neq y)) \Rightarrow x = y \] // establishes the postcondition
Total correctness via well-ordered sets

We have not established that the loop terminates
Suppose that the loop always reduces some variable’s value. Does the loop terminate if the variable is a
 – Natural number?
 – Integer?
 – Non-negative real number?
 – Boolean?
 – ArrayList?
The loop terminates if the variable values are (a subset of) a well-ordered set
 – Ordered set
 – Every non-empty subset has least element
Decrementing function

- Decrementing function \(D(X) \)
 - Maps state (program variables) to some well-ordered set
 - This greatly simplifies reasoning about termination

- **Consider**: `while (b) S;`

- **We seek** \(D(X) \), where \(X \) is the state, such that
 1. An execution of the loop reduces the function’s value:
 \[\text{LI} \land b \{ S \} D(X_{\text{post}}) < D(X_{\text{pre}}) \]
 2. If the function’s value is minimal, the loop terminates:
 \[(\text{LI} \land D(X) = \text{minVal}) \Rightarrow \neg b \]
Proving termination

// assert x ≥ 0 & y = 0
// Loop invariant: x ≥ y
// Loop decrements: (x-y)
while (x != y) {
 y = y + 1;
}
// assert x = y

Is this a good decrementing function?
1. Does the loop reduce the decrementing function’s value?
 // assert (y ≠ x); let d_{pre} = (x-y)
 y = y + 1;
 // assert (x_{post} - y_{post}) < d_{pre}
2. If the function has minimum value, does the loop exit?
 (x ≥ y & x - y = 0) \Rightarrow (x = y)
Choosing loop invariants

For straight-line code, the wp (weakest precondition) function gives us the appropriate property
For loops, you have to guess:
 The loop invariant
 The decrementing function
Then, use reasoning techniques to prove the goal property
If the proof doesn't work:
 Maybe you chose a bad invariant or decrementing function
 Choose another and try again
 Maybe the loop is incorrect
 Fix the code
Automatically choosing loop invariants is a research topic
When to use code proofs for loops

Most of your loops need no proofs

```java
for (String name : friends) { ... }
```

Write loop invariants and decrementing functions when you are unsure about a loop

If a loop is not working:

- Add invariant and decrementing function if missing
- Write code to check them
- Understand why the code doesn't work
- Reason to ensure that no similar bugs remain