Procedure specifications

CSE 331

Autumn 2010
Upcoming...

• Today
 – Stronger and weaker specifications; programs satisfying (or not) specifications: Quick recap and a really quick overview of *how* to compare specifications – we’ll come back to this
 – Abstract data types in some depth
• Wednesday: ADTs as specifications: representation invariants and abstraction functions
• Thursday (section): Junit
• Friday: comparing specifications (details from Monday)
• Monday 10/11: Overview of software testing
• Wednesday 10/13: (tentative) Overview of the project
Outline

• Satisfying a specification; substitutability
• Stronger and weaker specifications
 – Comparing by hand
 – Comparing via logical formulas
 – Comparing via transition relations
 • Full transition relations
 • Abbreviated transition relations
• Specification style; checking preconditions
Satisfaction of a specification

• Let P be an implementation and S a specification
• \(P \) satisfies \(S \) iff
 – Every behavior of \(P \) is permitted by \(S \)
 – “The behavior of \(P \) is a subset of \(S \)”
• The statement “\(P \) is correct” is meaningless
 – Though often made!
• If \(P \) does not satisfy \(S \), either (or both!) could be “wrong”
 – “One person’s feature is another person’s bug.”
 – It’s usually better to change the program than the spec – but not always
Why compare?

• We compare procedures to specifications to find out...
 – Does the procedure satisfy the specification?
 – Has the implementer succeeded?
• We compare specifications to one another to find out...
 – Which specification (if either) is stronger?
 – A stronger specification can always be substituted for a weaker specification
 – A procedure satisfying a stronger specification can be used anywhere that a weaker specification is required
A specification is satisfied by a set of procedures

• Suppose a procedure takes an integer as an argument
• Which code satisfies which specs?

<table>
<thead>
<tr>
<th>Procedure</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
</tr>
</thead>
<tbody>
<tr>
<td>return arg * 2;</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>return abs(arg);</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>return arg + 5;</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>return arg * arg;</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>return Integer.MAX_VALUE;</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>
Procedure specifications

Example of a procedure specification:

```java
// requires i > 0
// modifies nothing
// returns true iff i is a prime number
public static boolean isPrime (int i)
```

General form of a procedure specification:

```java
// requires
// modifies
// throws
// effects
// returns
```
How to compare specifications

• Three ways to compare
 – By hand; examine each clause
 – Logical formulas representing the specification
 – Transition relations
 • Full transition relations
 • Abbreviated transition relations

• Use whichever is most convenient
Technique 1: Comparing by hand

We can **weaken** a specification by

 Making **requires** harder to satisfy (**strengthening requires**)

 Preconditions: **contravariant**, all other clauses: **covariant**

 Adding things to **modifies** clause (**weakening modifies**)

 Making **effects** easier to satisfy (**weakening effects**)

 Guaranteeing less about **throws** (**weakening throws**)

 Guaranteeing less about **returns** value (**weakening returns**)

The **strongest** (most constraining) spec has the following:

 requires clause: true

 modifies clause: nothing

 effects clause: false

 throws clause: nothing

 returns clause: false

 (This particular spec is so strong as to be useless.)
Comparing logical formulas

Specification S1 is stronger than S2 iff:
\[\forall P, (P \text{ satisfies } S1) \implies (P \text{ satisfies } S2) \]
If each specification is a logical formula, this is equivalent to:
\[S1 \implies S2 \]
So, convert each spec to a formula (in 2 steps, see following slides)
This specification:
```
// requires R
// modifies M
// effects E
```
is equivalent to this single logical formula:
\[R \implies (E \land (\text{nothing but } M \text{ is modified})) \]
What about throws and returns? Absorb them into effects.
Final result: S1 is stronger than S2 iff
\[(R_1 \implies (E_1 \land \text{only-modifies}-M_1)) \implies (R_2 \implies (E_2 \land \text{only-modifies}-M_2)) \]
Convert spec to formula, step 1: absorb throws, returns

CSE 331 style:
 requires (unchanged)
 modifies (unchanged)
 throws
 effects } correspond to resulting "effects"
 returns

Example (from java.util.ArrayList<T>):
 // requires: true
 // modifies: this[index]
 // throws: IndexOutOfBoundsException if index < 0 || index ≥ size()
 // effects: this_post[index] = element
 // returns: this_pre[index]
 T set(int index, T element)

Equivalent spec, after absorbing throws and returns into effects:
 // requires: true
 // modifies: this[index]
 // effects: if index < 0 || index ≥ size() then throws IndexOutOfBoundsException
 // else this_post[index] = element && returns this_pre[index]
 T set(int index, T element)
Convert spec to formula, step 2: eliminate `requires`, `modifies`

Single logical formula

\[
\text{requires } \Rightarrow (\text{effects } \land (\text{not-modified}))
\]

“not-modified” preserves every field not in the `modifies` clause

Logical fact: If precondition is false, formula is true

Recall: \(\forall x. x \Rightarrow \text{true}; \ \forall x. \text{false} \Rightarrow x; \ (x \Rightarrow y) \equiv (\neg x \lor y) \)

Example:

// requires: true
// modifies: this[index]
// effects: E

T set(int index, T element)

Result:

\[
\text{true } \Rightarrow (E \land (\forall i \neq \text{index}. \ \text{this}_{\text{pre}}[i] = \text{this}_{\text{post}}[i]))
\]
Comparing transition relations

Transition relation relates **prestates** to **poststates**
Contains all possible \(\langle \text{input}, \text{output} \rangle \) pairs

Transition relation maps procedure arguments to results

```java
int increment(int i) {
    return i+1;
}
```

```java
double mySqrt(double a) {
    if (Random.nextBoolean())
        return Math.sqrt(a);
    else
        return -Math.sqrt(a);
}
```

A specification has a transition relation, too
Contains just as much information as other forms of specification
Satisfaction via transition relations

A **stronger** specification has a **smaller** transition relation

Rule: P satisfies S iff P is a subset of S
(when both are viewed as transition relations)

sqrt specification \((S_{\text{sqrt}})\)

```
// requires x is a perfect square
// returns positive or negative square root
int sqrt (int x)
```

Transition relation: \(\langle 0,0\rangle, \langle 1,1\rangle, \langle 1,-1\rangle, \langle 4,2\rangle, \langle 4,-2\rangle, \ldots\)

sqrt code \((P_{\text{sqrt}})\)

```
int sqrt (int x) {
    // ... always returns positive square root
}
```

Transition relation: \(\langle 0,0\rangle, \langle 1,1\rangle, \langle 4,2\rangle, \ldots\)

\(P_{\text{sqrt}}\) satisfies \(S_{\text{sqrt}}\) because \(P_{\text{sqrt}}\) is a subset of \(S_{\text{sqrt}}\)
Beware transition relations in abbreviated form

“P satisfies S iff P is a subset of S” is a good rule
But it gives the wrong answer for transition relations in abbreviated form
(The transition relations we have seen so far are in abbreviated form!)

anyOdd specification (S_{anyOdd})

```plaintext
// requires x = 0
// returns any odd integer
int anyOdd (int x)
```

Abbreviated transition relation: $\langle 0,1 \rangle, \langle 0,3 \rangle, \langle 0,5 \rangle, \langle 0,7 \rangle, \ldots$

anyOdd code (P_{anyOdd})

```plaintext
int anyOdd (int x) {
    return 3;
}
```

Transition relation: $\langle 0,3 \rangle, \langle 1,3 \rangle, \langle 2,3 \rangle, \langle 3,3 \rangle, \ldots$

The code satisfies the specification, but the rule says it does not

P_{anyOdd} is not a subset of S_{anyOdd}
because $\langle 1,3 \rangle$ is not in the specification’s transition relation

We will see two solutions to this problem: full or abbreviated transition relations
Satisfaction via full transition relations (option 1)

The transition relation should make explicit everything an implementation may do.

Problem: abbreviated transition relation for S does not indicate all possibilities.

anyOdd specification (S_{anyOdd}):

// requires x = 0
// returns any odd integer

int anyOdd (int x)

Full transition relation:

\langle 0, 1 \rangle, \langle 0, 3 \rangle, \langle 0, 5 \rangle, \langle 0, 7 \rangle, ... \quad // on previous slide
\langle 1, 0 \rangle, \langle 1, 1 \rangle, \langle 1, 2 \rangle, ..., \langle 1, \text{exception} \rangle, \langle 1, \text{infinite loop} \rangle, ... \quad // new
\langle 2, 0 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle, ..., \langle 2, \text{exception} \rangle, \langle 2, \text{infinite loop} \rangle, ... \quad // new

anyOdd code (P_{anyOdd})

int anyOdd (int x) {
 return 3;
}

Transition relation:

\langle 0, 3 \rangle, \langle 1, 3 \rangle, \langle 2, 3 \rangle, \langle 3, 3 \rangle, ... \quad // same as before
Satisfaction via abbreviated transition relations (option 2)

New rule: \(P \) satisfies \(S \) iff \(P \mid (\text{Domain of } S) \) is a subset of \(S \) where “\(P \mid D \)” = “\(P \) restricted to the domain \(D \)” i.e., remove from \(P \) all pairs whose first member is not in \(D \) (recall that a relation maps a domain to a range)

anyOdd specification (\(S_{\text{anyOdd}} \))

// requires \(x = 0 \)
// returns any odd integer

```c
int anyOdd (int x) {
    return 3;
}
```

Abbreviated transition relation: \(\langle 0,1 \rangle, \langle 0,3 \rangle, \langle 0,5 \rangle, \langle 0,7 \rangle, \ldots \)

anyOdd code (\(P_{\text{anyOdd}} \))

```c
int anyOdd (int x) {
    return 3;
}
```

Transition relation: \(\langle 0,3 \rangle, \langle 1,3 \rangle, \langle 2,3 \rangle, \langle 3,3 \rangle, \ldots \)

Domain of \(S = \{ 0 \} \)

\(P \mid (\text{domain of } S) = \langle 0,3 \rangle \), which is a subset of \(S \), so \(P \) satisfies \(S \)

The new rule gives the right answer even for abbreviated transition relations

We’ll use this version of the notation in CSE 331
Summary

• The abbreviated version of the transition relation can be misleading
 – The true transition relation contains all the pairs
• When doing comparisons
 – Use the expanded transition relation, or
 – Restrict the domain when comparing
• Either approach makes the “smaller is stronger rule” work
Review: strength of a specification

• A stronger specification is satisfied by fewer procedures
• A stronger specification has
 – weaker preconditions (note contravariance)
 – stronger postcondition
 – fewer modifications
 – Advantage of this view: can be checked by hand
• A stronger specification has a (logically) stronger formula
 – Advantage of this view: mechanizable in tools
• A stronger specification has a smaller transition relation
 – Advantage of this view: captures intuition of “stronger = smaller” (fewer choices)
Specification style

• Typically have only one of effects and returns
 – A procedure has a side effect xor is called for its value
 – Exception: return old value, as for `HashMap.put`

• The point of a specification is to be helpful
 – Formalism helps, overformalism doesn't

• A specification should be
 – coherent (not too many cases)
 – informative (bad example: `HashMap.get`)
 – strong enough (to do something useful, to make guarantees)
 – weak enough (to permit (efficient) implementation)
Checking preconditions

• Checking preconditions
 – makes an implementation more robust
 – provides better feedback to the client
 – avoids silent errors

• A quality implementation checks preconditions whenever it is inexpensive and convenient to do so