Problem 1. Practice with B+ Trees

For the following questions about B+ trees, you only need to show the final result, but note that if you do this it will be hard to award partial credit if the final result is incorrect. [Note that this problem is about B+ trees, not B-trees, as discussed in lecture. The Weiss textbook also described B+ trees, though, somewhat confusingly, refers to them as B-trees and then clarifies in a footnote.]

(a) Show the result of inserting 10, 15, 12, 3, 1, 13, 4, 17, and 8 into an initially empty B+ tree with \(M = 3 \) and \(L = 2 \).

To maintain consistency in answers, please follow the following rules:

- You should split nodes whenever there is an overflow due to insertion. Another option, discussed in the textbook, is to put a child up for adoption to avoid splitting; this is a viable option, but we ask that you not pursue it and instead split the overflowed node.

- When splitting a leaf node due to insertion overflow, you keep the smallest \(\lceil (L+1)/2 \rceil \) elements in the original node and put the largest \(\lfloor (L+1)/2 \rfloor \) elements in the new node. When splitting an internal node, you keep the \(\lceil (M+1)/2 \rceil \) children with the smaller values attached to the original node and attach the \(\lfloor (M+1)/2 \rfloor \) children with the larger values to the new node. So, after splitting a node into a “left” node and a “right” node, the number of elements (or children) in the left node will always be greater than or equal to the number of elements (or children) in the right node.

(b) Now show the result of deleting 12, 13, and 15.

Problem 2. Finding the Median with a BST

In this problem, we will consider the problem of finding the median of a set of numbers stored in a BST tree.

(a) To find the median, we will need to know how many nodes every subtree has. Suppose the function \(\text{numNodes}(\text{node}) \) returns the number of nodes in the subtree rooted at \(\text{node} \). What is the recursive relationship that gives \(\text{numNodes}(\text{node}) \) in terms of \(\text{numNodes}(\text{left}) \) and \(\text{numNodes}(\text{right}) \), where \(\text{left} \) and \(\text{right} \) are the left and right children of \(\text{node} \)? What should \(\text{numNodes}(\text{null}) \) be?

(b) Suppose we have stored with each node the number of nodes in the subtree rooted at that node. (Using the definition in the previous sub-problem, we could have been computing it efficiently while adding and deleting elements from the tree.)

Write out pseudocode for an efficient algorithm that will find the median of the values stored in the tree. For simplicity, assume that there are an odd number of nodes, so that the median is unambiguous. If the tree is balanced (e.g., an AVL tree), then your algorithm should have \(O(\log n) \) worst case running time.
Note: please write pseudocode that actually resembles code (e.g., Java) – it doesn’t need to compile, but it should be easy for a programmer to read.

(c) Suppose the tree were a general BST tree and you ran your algorithm on it. What would the worst case complexity be?

Problem 3. Practice with Hashing

This will give you a chance to get some practice with hash tables, which you will be using in the current project.

(a) Weiss, problem 5.1. Assume the table size is 10.

(b) Weiss, problem 5.2. Choose the new table size to be 19, which is prime and roughly twice as big. Naturally, when rehashing, you should start with the corresponding input hash table and rehash elements from top to bottom; i.e., after hashing, you no longer know the insertion order and should simply iterate through the existing hash table. Also, if any items were not successfully inserted the first time, they should be inserted in this pass, at the end, in the order of failure. (In a real situation, if you failed to insert an element, you would probably rehash to a larger table immediately.)

(c) Suppose a hash table is accessed by open addressing and contains a cell X marked as “deleted”. Suppose that the next successful find hits and moves past cell X and finds the key in cell Y. Suppose we move the found key to cell X, mark cell X as “active” and mark cell Y as “open”. Suppose this policy is used for every find. Would you expect this to work better or worse compared to not modifying the table? Explain your answer.

(d) Suppose that instead of marking cell Y as “open” in the previous question, you mark it as “deleted”. Suppose this policy is used for every find. Would you expect this to work better or worse compared to not modifying the table? Explain your answer.