CSE 326: Data Structures

Graphs

James Fogarty
Spring 2009
Graphs

Formalism representing relationships among objects

Graph \(G = (V, E) \)

- **Set of vertices**
 (aka nodes):
 \(V = \{v_1, v_2, \ldots, v_n\} \)

- **Set of edges**:
 \(E = \{e_1, e_2, \ldots, e_m\} \)
 where each \(e_i \) connects one vertex to another \((v_j, v_k) \)

Graphs can be *directed* or *undirected*
Graphs

• Graphs are not quite an ADT
 – Operations are unclear

• Many algorithms developed for graphs

• Many important problems can be solved by formulating them as graphs, then applying a standard graph algorithm
Examples of Graphs

• The web
 – Vertices are webpages
 – Each edge is a link from one page to another

• Social networks
 – Vertices are people
 – Edges connect friends

• Call graph of a program
 – Vertices are subroutines
 – Edges are calls and returns
Undirected Graphs

In *undirected* graphs, edges have no specific direction (edges are always two-way):

Thus, \((u, v) \in E\) implies \((v, u) \in E\). Only one of these edges needs to be in the set; the other is implicit.

Degree of a vertex: number of edges containing that vertex. (Same as number of adjacent vertices.)
Directed Graphs

In *directed* graphs (aka *digraphs*), edges have a specific direction:

Thus, \((u,v) \in E\) does not imply \((v,u) \in E\).

In-degree of a vertex: number of inbound edges.
Out-degree of a vertex: number of outbound edges.
Graphs

Notation

\[|\mathbf{V}| = \text{number of vertices} \]
\[|\mathbf{E}| = \text{number of edges} \]

- \(\mathbf{v} \) is adjacent to \(\mathbf{u} \) if \((\mathbf{u}, \mathbf{v}) \in \mathbf{E} \)
 - neighbor of = adjacent to
 - Order matters for directed edges

- It is possible to have an edge \((\mathbf{v}, \mathbf{v}) \)
 - This edge type called a loop.
Weighted Graphs

Each edge has an associated weight or cost.

![Diagram of weighted graph with cities and weights]

- Clinton to Mukilteo: 20
- Kingston to Edmonds: 30
- Bainbridge to Seattle: 35
- Bremerton to Seattle: 60
Paths and Cycles

- A *path* is a list of vertices \(\{v_1, v_2, ..., v_n\} \) such that \((v_i, v_{i+1}) \in E\) for all \(0 \leq i < n\).
- A *cycle* is a path that begins and ends at the same node.
- A graph is *acyclic* if it contains no cycles.

\[p = \{Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle\} \]
Path Length and Cost

- **Path length**: the number of edges in the path
- **Path cost**: the sum of the costs of each edge

For path P:
- $\text{length}(P) = 5$
- $\text{cost}(P) = 11.5$

How would you ensure $\text{length}(p) = \text{cost}(p)$ for all p?
Simple Paths and Cycles

A *simple path* repeats no vertices (except that the first can also be the last):

- \(P = \{\text{Seattle, Salt Lake City, San Francisco, Dallas}\} \)
- \(P = \{\text{Seattle, Salt Lake City, Dallas, San Francisco, Seattle}\} \)

A *cycle* is a path that starts and ends at the same node:

- \(P = \{\text{Seattle, Salt Lake City, Dallas, San Francisco, Seattle}\} \)
- \(P = \{\text{Seattle, Salt Lake City, Seattle, San Francisco, Seattle}\} \)

A *simple cycle* is a cycle that is also a simple path
Paths/Cycles in Directed Graphs

Consider this directed graph:

```
A ----> B ----> C ----> D
     |          |
     |          |
     V          V
     B ----> C
```

Is there a path from A to D? No

Does the graph contain any cycles? No
Undirected Graph Connectivity

Undirected graphs are *connected* if there is a path between any two vertices:

Connected graph

Disconnected graph

A *complete undirected* graph has an edge between every pair of vertices:

(Complete = *fully connected.*)
Directed Graph Connectivity

Directed graphs are *strongly connected* if there is a path from any one vertex to any other.

Directed graphs are *weakly connected* if there is a path between any two vertices, *ignoring direction*.

A *complete directed* graph has a directed edge between every pair of vertices. (Again, complete = *fully connected*.)
A tree is a graph that is:
- *undirected*
- *acyclic*
- *connected*

That don’t look like any tree I ever seen
Rooted Trees

We are more accustomed to:

- Rooted trees (a tree node that is “special”)
- Directed edges from parents to children (parent closer to root).

A rooted tree (root indicated in red) drawn two ways

Rooted tree with directed edges from parents to children.

Characteristics of this graph?

- Directed, acyclic, weakly connected, path from root to every other node
Directed Acyclic Graphs (DAGs)

DAGs are directed graphs with no (directed) cycles.

Aside: If program’s call-graph is a DAG, then all procedure calls can be in-lined

\[{ \text{Rooted, directed tree} } \subseteq \{ \text{DAG} \} \subseteq \{ \text{Graph} \} \]
How many edges $|E|$ in a graph with $|V|$ vertices?

$0 \leq |E| \leq |V|^2$

What if the graph is directed?

$0 \leq |E| \leq 2|V|^2$

What if it is undirected and connected?

$|V|-1 \leq |E| \leq |V|^2$

Can the following bounds be simplified?

- Arbitrary graph: $O(|E| + |V|^2)$
- Undirected, connected: $O(|E| \log|V| + |V| \log|V|)$

Some (semi-standard) terminology:

- A graph is *sparse* if it has $O(|V|)$ edges (upper bound).
- A graph is *dense* if it has $\Theta(|V|^2)$ edges.
What’s the data structure?

- Think about what we want to support
- What is the common query?
- Which edges are adjacent to a vertex?
Representation 1: Adjacency Matrix

A \(|V| \times |V|\) matrix \(M\) in which an element \(M[u, v]\) is true if and only if there is an edge from \(u\) to \(v\).

Runtimes:
- Iterate over vertices? \(O(|V|)\)
- Iterate over edges? \(O(|V|^2)\)
- Iterate edges adj. to vertex? \(O(|V|)\)
- Existence of edge? \(O(1)\)

Space requirements? \(O(|V|^2)\)
Best for what kinds of graphs? dense
Representation 2: Adjacency List

A list (array) of length $|V|$ in which each entry stores a list (linked list) of all adjacent vertices.

Runtimes:
- Iterate over vertices? $O(|V|)$
- Iterate over edges? $O(|E|)$
- Iterate edges adj. to vertex? $O(d)$
- Existence of edge? $O(d)$
- Space requirements? $O(|V|+|E|)$
- Best for what kinds of graphs? sparse
Representing Undirected Graphs

What do these representations look like for an undirected graph?

Adjacency matrix:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjacency list:

A
B
A
C
B
C D
D C
Some Applications: Moving Around Washington

What’s the *shortest* way to get from Seattle to Pullman?

Edge labels:
What’s the *fastest way* to get from Seattle to Pullman?

Edge labels:

Distance, speed limit
If Wenatchee’s phone exchange goes down, can Seattle still talk to Pullman?
Some Applications:
Bus Routes in Downtown Seattle

If we’re at 3rd and Pine, how can we get to 1st and University using Metro? How about 4th and Seneca?
Application: Topological Sort

Given a graph, \(G = (V, E) \), output all the vertices in \(V \) sorted so that no vertex is output before any other vertex with an edge to it.

What kind of input graph is allowed? \(\text{DAG} \)

Is the output unique? No, often called a partial ordering
Topological Sort: Take One

1. Label each vertex with its *in-degree* (# of inbound edges)

2. **While** there are vertices remaining:
 a. Choose a vertex \(v \) of *in-degree zero*; output \(v \)
 b. Reduce the in-degree of all vertices adjacent to \(v \)
 c. Remove \(v \) from the list of vertices

Runtime: \(O(|V|^2 + |E|) \) \(O(|V|^2) \)
void Graph::topsort()
{
 Vertex v, w;

 labelEachVertexWithItsInDegree();

 for (int counter=0; counter < NUM_VERTICES;
 counter++){
 v = findNewVertexOfDegreeZero();
 v.topologicalNum = counter;
 for each w adjacent to v
 w.indegree--;
 }
}

What's the bottleneck?
Finding a new vertex
Topological Sort: Take Two

1. Label each vertex with its in-degree
2. Initialize a queue Q to contain all in-degree zero vertices
3. While Q not empty
 a. $v = Q$.dequeue; output v
 b. Reduce the in-degree of all vertices adjacent to v
 c. If new in-degree of any such vertex u is zero Q.enqueue(u)

Is the use of a queue here important?

Runtime: $O(|V| + |E|)$

No, can use a stack, list, set, box, etc. Changes behavior, but not the fact the result is a topological sort
void Graph::topsort(){
 Queue q(NUM_VERTICES);
 int counter = 0;
 Vertex v, w;
 labelEachVertexWithItsIn-degree();

 q.makeEmpty();
 for each vertex v
 if (v.indegree == 0)
 q.enqueue(v);

 while (!q.isEmpty()){
 v = q.dequeue();
 v.topologicalNum = ++counter;
 for each w adjacent to v
 if (--w.indegree == 0)
 q.enqueue(w);
 }
}
Graph Traversals

• Breadth-first search (and depth-first search) work for arbitrary (directed or undirected) graphs - not just mazes!
 – Mark visited vertices so do not enter an infinite loop

• Either can be used to determine connectivity:
 – Is there a path between two given vertices?
 – Is the graph (weakly) connected?

• Which one:
 – Uses a queue?
 – Uses a stack?
 – Always finds the shortest path (for unweighted graphs)?