Analysis of splay trees

Effects of splaying mystical, analysis subtle.
Goal: most operations on an initially empty tree that never has more than n nodes use $O(\log n)$ time.
Note: some operations may take more than $\log n$ time, but then earlier ones must have taken less.
Strategy: "Store" excess time for later use. Money analogy. With each operation, add $O(\log n)$ dollars to tree, distributed among nodes. Each rotation (single or double) costs $1. Show that there's always enough money to pay for rotations.

Defn. For any node N, let $w(N)$ be the number of descendants of N, and $r(N) = \log_2 w(N)$, the rank of N.

Money Invariant: Each node N has $r(N)$ dollars at all times.

Cost of Splay Steps.

Defn. Let P be a node involved in a rotation. $r'(P)$ denotes its rank after the rotation, and $r(P)$ its rank before.

Cost of Splay Steps Lemma: A rotation involving P's parent, and possibly P's grandparent can be done with an additional

$$3(r'(P) - r(P))$$

plus 1 if this was the last rotation in the splay.

Proof: 3 cases, based on type of rotation. We'll only do the simplest:

Case 1: P has no grandparent (Fig 7.21). The extra 1 pays for the rotation. To maintain the Money Invariant, need new $\$1$ as follows:

$$r'(P) + r'(Q) - r(P) - r(Q) = r'(Q) - r(P) = r'(P) - r(P).$$

This is only 1/3 of what the lemma allows.

Case 2: Fig 7.22 & see book.

10/30/96
Case 3: Fig. 7.23. Have to restate Money Invariance, and pay #1.

\[r'(R) \leq r(R) \text{ and } r'(Q) \leq r(Q). \]

Leave R's money at R, and leave G's money at Q.

To satisfy at EP, move P's money to R, and add additional

\[r'(P) = r'(Q) - r'(P). \]

To pay #1:
- If \(r'(P) < r'(P) \), still have additional dollars.
- Otherwise, \(r'(P) = r(P) = r(R) = r(Q) \).

Either \(r'(R) < r'(P) \) or \(r'(R) < r'(P) \), since a node of rank \(x \) can't have two children both of rank \(x \).

Thus, either \(r'(R) < r'(Q) \) (pay #1 from Q's dollars)

or \(r'(R) < r(R) \) (move #1 from P to R).

Example of Case 3:

\[\begin{array}{c}
R: \ 2 \ #2 \\
\ \ \ \ 1 \\
\ \ \ Q: \ 7 \ #2 \\
\ \ \ \ P: \ 5 \ #2 \\
\ \ \ \ 4 \\
\ \ \ \ \ 6 \\
\ \ \ \ \ 3 \\
\end{array} \]

\[\Rightarrow \begin{array}{c}
P: \ 5 \ #2 \\
\ \ \ R: \ 2 \ #2 \\
\ \ \ \ Q: \ 7 \ #1 \\
\ \ \ \ 1 \\
\ \ \ \ 4 \\
\ \ \ \ \ 6 \\
\ \ \ \ \ 3 \\
\end{array} \]
Investment Lemma: Splaying a tree with \(n \) nodes can be done with an additional \(3 \lfloor \log_2 n \rfloor + 1 \) rotations using \(k \)-rotations (Case I, II, or II)

Proof: Suppose the splay brings \(P \) to the root. Let \(r(i)(P) \) be the rank of \(P \) after \(i \) rotations of the splay. By the Cost of Splay Steps Lemma, the number of additional \(\$ \) to splay

is

\[
3 (r(1)(P) - r(P)) + 3 (r(2)(P) - r(1)(P)) + \ldots + 3 (r(k)(P) - r(k-1)(P)) + 1
\]

\[
\leq 3 \lfloor \log_2 n \rfloor + 1.
\]

11/1/96

Theorem: Any sequence of \(m \) dictionary operations on a self-adjusting tree that is initially empty and never has more than \(n \) nodes uses \(O(m\log n) \) time.

Proof: Show that each operation can be done with an additional \(O(\log n) \) \(\$ \). (Note that total time of each op is proportional to \# of rotations.

Lookup: Splay costs \(O(\log n) \) new \(\$ \), by Investment Lemma.

Insert: Cost is splay + investment in new root, which is \(O(\log n) \) \$.

Concat: Cost is splay + investment to make \(T_2 \) a subtree of root, which is \(O(\log n) \) \$.

Delete: Cost is splay + Concat.

Corollary:

5/6/96

11/6/96

2/9/98

10/28/98