How fast can we sort?

- Heapsort, Mergesort, and Quicksort all run in $O(N \log N)$ best case running time
- Can we do any better?
- No, if the basic action is a comparison.

Permutations

- How many possible orderings can you get?
 - Example: a, b, c ($N = 3$)
 - $(a \ b \ c), (a \ c \ b), (b \ a \ c), (b \ c \ a), (c \ a \ b), (c \ b \ a)$
 - 6 orderings $= 3 \cdot 2 \cdot 1 = 3!$ (ie, “3 factorial”)
 - All the possible permutations of a set of 3 elements
- For N elements
 - N choices for the first position, $(N-1)$ choices for the second position, ..., (2) choices, 1 choice
 - $N(N-1)(N-2)...(2)(1) = N!$ possible orderings

Sorting Model

- Recall our basic assumption: we can only compare two elements at a time
 - we can only reduce the possible solution space by half each time we make a comparison
- Suppose you are given N elements
 - Assume no duplicates
 - How many possible orderings can you get?
 - Example: a, b, c ($N = 3$)
Decision Trees

- A Decision Tree is a Binary Tree such that:
 - Each node = a set of orderings
 - i.e., the remaining solution space
 - Each edge = 1 comparison
 - Each leaf = 1 unique ordering
 - How many leaves for N distinct elements?
 - N!, i.e., a leaf for each possible ordering
 - Only 1 leaf has the ordering that is the desired correctly sorted arrangement

Decision Trees and Sorting

- Every sorting algorithm corresponds to a decision tree
 - Finds correct leaf by choosing edges to follow
 - i.e., by making comparisons
 - Each decision reduces the possible solution space by one half
- Run time is ≥ maximum no. of comparisons
 - maximum number of comparisons is the length of the longest path in the decision tree, i.e. the height of the tree

Decision Tree Example

![Decision Tree Example Diagram]

How many leaves on a tree?

- Suppose you have a binary tree of height d.
- How many leaves can the tree have?
 - d = 1 ↔ 2 leaves,
 - d = 2 ↔ at most 4 leaves, etc.

Lower bound on Height

- A binary tree of height d has at most 2^d leaves
 - depth d = 1 ↔ 2 leaves, d = 2 ↔ 4 leaves, etc.
 - Can prove by induction
- Number of leaves, L ≤ 2^d
- Height d ≥ $\log_2 L$
- The decision tree has N! leaves
- So the decision tree has height $d \geq \log_2(N!)$

log(N!) is $\Omega(N \log N)$

$$\log(N!) = \log(N \cdot (N-1) \cdot (N-2) \cdot \ldots \cdot 2 \cdot 1) = \log N + \log (N-1) + \log (N-2) + \ldots + \log 2 + \log 1 \geq \log N + \log (N-1) + \log (N-2) + \ldots + \log \frac{N}{2} \geq \frac{N}{2} \log \frac{N}{2} = \frac{N}{2} \log N - \frac{N}{2} = \Omega(N \log N)$$
\(\Omega(N \log N) \)

- Run time of any comparison-based sorting algorithm is \(\Omega(N \log N) \)
- Can we do better if we don’t use comparisons?

Radix Sort: Sorting integers

- Historically goes back to the 1890 census.
- Radix sort = multi-pass bucket sort of integers in the range 0 to \(B^{P-1} \)
- Bucket-sort from least significant to most significant “digit” (base \(B \))
- Requires \(P(B+N) \) operations where \(P \) is the number of passes (the number of base \(B \) digits in the largest possible input number).
- If \(P \) and \(B \) are constants then \(O(N) \) time to sort!

Implementation Options

- **List**
 - List of data, bucket array of lists.
 - Concatenate lists for each pass.
- **Array / List**
 - Array of data, bucket array of lists.
- **Array / Array**
 - Array of data, array for all buckets.
 - Requires counting.
Choosing Parameters for Radix Sort

- **N** number of integers – given
- **m** bit numbers - given
- **B** number of buckets
 - $B = 2^r$ – calculations can be done by shifting.
 - N/B not too small, otherwise too many empty buckets.
 - $P = m/r$ should be small.
- **Example** – 1 million 64 bit numbers. Choose $B = 2^{16} = 65,536$. 1 Million / $B = 15$ numbers per bucket. $P = 64/16 = 4$ passes.

Properties of Radix Sort

- **Not in-place**
 - needs lots of auxiliary storage.
- **Stable**
 - equal keys always end up in same bucket in the same order.
- **Fast**
 - $B = 2^r$ buckets on m bit numbers

 $O_m \left(\frac{n + 2^r}{r} \right)$ time

Internal versus External Sorting

- So far assumed that accessing $A[i]$ is fast – Array A is stored in internal memory (RAM)
 - Algorithms so far are good for internal sorting
- **What if A is so large that it doesn’t fit in internal memory?**
 - Data on disk or tape
 - Delay in accessing $A[i]$ – e.g. need to spin disk and move head

- Need sorting algorithms that minimize disk/tape access time
 - **External sorting – Basic Idea:**
 - Load chunk of data into RAM, sort, store this “run” on disk/tape
 - Use the Merge routine from Mergesort to merge runs
 - Repeat until you have only one run (one sorted chunk)
 - Text gives some examples
Summary of Sorting

- Sorting choices:
 - O(N^2) – Bubblesort, Insertion Sort
 - O(N log N) average case running time:
 - Heapsort: In-place, not stable (read about it).
 - Mergesort: O(N) extra space, stable.