K-D Trees and Quad Trees

CSE 326
Data Structures
Lecture 9

Reading
- Chapter 12.6

Geometric Data Structures
- Organization of points, lines, planes, … to support faster processing
- Applications
 - Astrophysical simulation – evolution of galaxies
 - Graphics – computing object intersections
 - Data compression
 - Points are representatives of 2x2 blocks in an image
 - Nearest neighbor search

k-d Trees
- Jon Bentley, 1975, while an undergraduate
- Tree used to store spatial data.
 - Nearest neighbor search.
 - Range queries.
 - Fast look-up
- k-d tree are guaranteed log₂ n depth where n is the number of points in the set.
 - Traditionally, k-d trees store points in d-dimensional space which are equivalent to vectors in d-dimensional space.

Range Queries
- Rectangular query
- Circular query

Nearest Neighbor Search
- Nearest neighbor is e.
k-d Tree Construction

- If there is just one point, form a leaf with that point.
- Otherwise, divide the points in half by a line perpendicular to one of the axes.
- Recursively construct k-d trees for the two sets of points.
- Division strategies
 - divide points perpendicular to the axis with widest spread.
 - divide in a round-robin fashion (book does it this way)

k-d Tree Construction (1)

divide perpendicular to the widest spread.

k-d Tree Construction (2)

k-d Tree Construction (3)

k-d Tree Construction (4)

k-d Tree Construction (5)
k-d Tree Construction (18)

2-d Tree Decomposition

k-d Tree Splitting

k-d Tree Construction Complexity

Node Structure for k-d Trees

- First sort the points in each dimension.
 - $O(dn \log n)$ time and dn storage.
 - These are stored in $A[1..d,1..n]$
- Finding the widest spread and equally divide into two subsets can be done in $O(dn)$ time.
- We have the recurrence
 - $T(n,d) \leq 2T(n/2,d) + O(dn)$
- Constructing the k-d tree can be done in $O(dn \log n)$ and dn storage.

- A node has 5 fields
 - axis (splitting axis)
 - value (splitting value)
 - left (left subtree)
 - right (right subtree)
 - point (holds a point if left and right children are null)
Rectangular Range Query

- Recursively search every cell that intersects the rectangle.
Rectangular Range Query

```
print_range(xlow, xhigh, ylow, yhigh :integer, root: node pointer) {
    Case {
        root = null: return;
        root.left = null:
        if xlow < root.point.x and root.point.x < xhigh
            and ylow < root.point.y and root.point.y < yhigh
            then print(root);
        else
            if(root.axis = "x" and xlow < root.value ) or 
            (root.axis = "y" and ylow < root.value )
            then print_range(xlow, xhigh, ylow, yhigh, root.left);
            if (root.axis = "x" and xlow > root.value ) or 
            (root.axis = "y" and ylow > root.value )
            then print_range(xlow, xhigh, ylow, yhigh, root.right);
    }
}
```

Analysis of Rectangular Range Query
- Worst case time is $O(n)$ as seen by the pathological example.

k-d Tree Nearest Neighbor Search
- Search recursively to find the point in the same cell as the query.
- On the return search each subtree where a closer point than the one you already know about might be found.
Main is NNS(q,root,null,infinity)

Nearest Neighbor Search

\[
\text{NNS}(q: \text{point}, n: \text{node}, p: \text{point}, w: \text{distance}) : \text{point} = \begin{cases}
\text{if } n.\text{left} = \text{null} \text{ then } \text{(leaf case)} \\
\text{if distance}(q,n.\text{point}) < w \text{ then return } n.\text{point} \text{ else return } p; \\
\text{else} \\
\text{if } w = \infty \text{ then} \\
\text{if } q(n.\text{axis}) < n.\text{value} \text{ then } p := \text{NNS}(q,n.\text{left},p,w); \\
\text{else } p := \text{NNS}(q,n.\text{right},p,w); \\
\text{if distance}(p,q) < n.\text{value} \text{ then return } p; \\
\text{else} \\
\text{if } q(n.\text{axis}) + w > n.\text{value} \text{ then } p := \text{NNS}(q,n.\text{right},p,w); \\
\text{else } p := \text{NNS}(q,n.\text{left},p,w); \\
\text{if distance}(p,q) < n.\text{value} \text{ then return } p; \end{cases}
\]

The Conditional

\[q(n.\text{axis}) + w > n.\text{value}\]

Worst-Case for Nearest Neighbor Search

- Half of the points visited for a query
- Worst case \(O(n)\)
- But, on average (and in practice) nearest neighbor queries are \(O(\log N)\)

Notes on \(k\)-d NNS

- Has been shown to run in \(O(\log n)\) average time per search in a reasonable model. (Assume \(d\) a constant)
- Storage for the \(k\)-d tree is \(O(n)\).
- Preprocessing time is \(O(n \log n)\) assuming \(d\) is a constant.

Quad Trees

- Space Partitioning
Quad Trees

- Space Partitioning

A Bad Case

Notes on Quad Trees

- Number of nodes is $O(n(1 + \log(\Delta/n)))$ where n is the number of points and Δ is the ratio of the width (or height) of the key space and the smallest distance between two points
- Height of the tree is $O(\log n + \log \Delta)$

K-D vs Quad

- k-D Trees
 - Density balanced trees
 - Height of the tree is $O(\log n)$ with batch insertion
 - Good choice for high dimension
 - Supports insert, find, nearest neighbor, range queries
- Quad Trees
 - Space partitioning tree
 - May not be balanced
 - Not a good choice for high dimension
 - Supports insert, delete, find, nearest neighbor, range queries

Geometric Data Structures

- Geometric data structures are common.
- The k-d tree is one of the simplest.
 - Nearest neighbor search
 - Range queries
- Other data structures used for
 - 3-d graphics models
 - Physical simulations