Why Do We Need Trees?

• Lists, Stacks, and Queues are linear data structures
• Information often contains hierarchical relationships
 › File directories or folders on your computer
 › Moves in a game
 › Employee hierarchies in organizations
• Trees support fast searching

Tree Jargon

• root
• nodes and edges
• leaves
• parent, children, siblings
• ancestors, descendants
• subtrees
• path, path length
• height, depth

More Tree Jargon

• **Length** of a path = number of edges
• **Depth** of a node N = length of path from root to N
• **Height** of node N = length of longest path from N to a leaf
• **Height of tree** = height of root

Definition and Tree Trivia

• A tree is a set of nodes
 • that is an empty set of nodes, or
 • has one node called the root from which zero or more trees (subtrees) descend
• A tree with N nodes always has N-1 edges
• Two nodes in a tree have at most one path between them
Implementation of Trees

- One possible pointer-based Implementation
 - tree nodes with value and a pointer to each child
 - but how many pointers should we allocate space for?
- A more flexible pointer-based implementation
 - 1st Child / Next Sibling List Representation
 - Each node has 2 pointers: one to its first child and one to next sibling
 - Can handle arbitrary number of children

Arbitrary Branching

- FirstChild Sibling List Representation
- Each node has 2 pointers: one to its first child and one to next sibling
- Can handle arbitrary number of children

Application: Arithmetic Expression Trees

Example Arithmetic Expression:
A + (B * (C / D))
How would you express this as a tree?

Application: Arithmetic Expression Trees

Example Arithmetic Expression:
A + (B * (C / D))
Tree for the above expression:

- Used in most compilers
- No parenthesis need – use tree structure
- Can speed up calculations e.g. replace / node with C/D if C and D are known
- Calculate by traversing tree (how?)

Traversing Trees

- Preorder: Node, then Children recursively
 - A * B / C D
- Inorder: Left child recursively, Node, Right child recursively (Binary Trees)
 - A + B * C / D
- Postorder: Children recursively, then Node
 - A B C D / * +

Binary Trees

- Every node has at most two children
 - Most popular tree in computer science
 - Easy to implement, fast in operation
- Given N nodes, what is the minimum height of a binary tree?
 - A height h tree has at most $2^{h+1} - 1$ nodes
 - Hence, a binary tree with N node has height $> \log_2 N - 1$
Upper Bound on Number of Nodes

- Define N_h to be the maximum number of nodes in a binary tree of height h.
- Theorem: $N_h = 2^{h+1} - 1$
- Proof by induction on h.
 - $h=0$: $2^{h+1} - 1 = 1$ and $N_0 = 1$.
 - $h>0$: $N_h = 2N_{h-1} + 1 = 2(2^{h-1} - 1) + 1 = 2^{h+1} - 1$

Lower Bound on Height

- Theorem: Any binary tree with N nodes has height $\geq \lceil \log_2 N \rceil - 1$
- Proof.
 - Let T be any binary tree of N nodes and let h be its height.
 - $N \leq N_h < 2^{h+1}$
 - $\log_2 N < h + 1$
 - $\lceil \log_2 N \rceil \leq h + 1$
 - $\lceil \log_2 N \rceil - 1 \leq h$

Complete Binary Trees

- A complete binary tree of N nodes is one of minimum height with the maximum depth nodes on the left.
 - $N=10$
 - $\lceil \log_{10} 10 \rceil - 1 = 3$

A degenerate tree

- A linked list with high overhead and few redeeming characteristics

Binary Search Trees

- Binary search trees are binary trees in which
 - all values in the node’s left subtree are less than node value
 - all values in the node’s right subtree are greater than node value
- Operations:
 - Find, FindMin, FindMax, Insert, Delete

Operations on Binary Search Trees

- How would you implement these?
 - Recursive definition of binary search trees allows recursive routines
 - Call by reference helps too
 - FindMin
 - FindMax
 - Find
 - Insert
 - Delete
Find

Find(T : tree pointer, x : element): tree pointer {
 case {
 T = null : return null;
 T.data = x : return T;
 T.data > x : return Find(T.left,x);
 T.data < x : return Find(T.right,x);
 }
}

FindMin

• Class Participation
• Design recursive FindMin operation that returns the smallest element in a binary search tree.
 > FindMin(T : tree pointer): tree pointer {
 // precondition: T is not null //
 ???
 }

Insert Operation

• Insert(T: tree, X: element)
 > Do a “Find” operation for X
 > If X is found, then update duplicates counter
 > Else, “Find” stops at a NULL pointer
 > Insert Node with X there
• Example: Insert 95

Insert 95

Insert(T : reference tree pointer, x : element): integer {
 if T = null then
 T := new tree; T.data := x; return 1
 case {
 T.data = x : return 0;
 T.data > x : return Insert(T.left, x);
 T.data < x : return Insert(T.right, x);
 }
}

Advantage of reference parameter is that the call has the original pointer not a copy.
Call by Value vs Call by Reference

• Call by value
 › Copy of parameter is used

• Call by reference
 › Actual parameter is used

Delete Operation

• Delete is a bit trickier... Why?
• Suppose you want to delete 10
• Strategy:
 › Find 10
 › Delete the node containing 10
• Problem: When you delete a node, what do you replace it by?

Delete Operation

• Problem: When you delete a node, what do you replace it by?
• Solution:
 › If it has no children, by NULL
 › If it has 1 child, by that child
 › If it has 2 children, by the node with the smallest value in its right subtree (the successor of the node)

Delete “5” - No children

Find 5 node
Then Free the 5 node and NULL the pointer to it

Delete “24” - One child

Find 24 node
Then Free the 24 node and replace the pointer to it with a pointer to its child

Delete “10” - two children

Find 10, Copy the smallest value in right subtree into the node
Then recursively Delete node with smallest value in right subtree
Note: it does not have two children
Delete “11” - One child

Remember 11 node

Then Free the 11 node and replace the pointer to it with a pointer to its child

FindMin Solution

FindMin(T : tree pointer) : tree pointer {
 // precondition: T is not null
 if T.left = null return T
 else return FindMin(T.left)
}