Plan

- Look at three sorting algorithms in detail
 - Insertion Sort
 - Mergesort
 - Quicksort

Sorting

- Input
 - an array A of data records
 - a key value in each data record
 - a comparison function which imposes a consistent ordering on the keys
- Output
 - reorganize the elements of A such that
 - For any i and j, if i < j then A[i] ≤ A[j]

Consistent Ordering

- The comparison function must provide a consistent ordering on the set of possible keys
 - You can compare any two keys and get back an indication of a < b, a > b, or a = b (tricotomy)
 - The comparison functions must be consistent
 - If compare(a, b) says a < b, then compare(b, a) must say b > a
 - If compare(a, b) says a > b, then compare(b, a) must say b < a
 - If compare(a, b) says a = b, then equals(a, b) and equals(b, a) must say a = b

Why Sort?

- Allows binary search of an N-element array in O(log N) time
- Allows O(1) time access to kth largest element in the array for any k
- Allows easy detection of any duplicates
- Sorting algorithms are among the most frequently used algorithms in computer science

Space

- How much space does the sorting algorithm require in order to sort the collection of items?
 - Is copying needed
 - In-place sorting – no copying – O(1) additional space.
 - External memory sorting – data so large that does not fit in memory
Time

- How fast is the algorithm?
 - The definition of a sorted array A says that for any \(i < j \), \(A[i] \leq A[j] \)
 - This means that you need to at least check on each element at the very minimum
 - which is \(O(N) \)
 - And you could end up checking each element against every other element
 - which is \(O(N^2) \)
 - The big question is: How close to \(O(N) \) can you get?

Insertion Sort

- What if first \(k \) elements of array are already sorted?
 - 4, 7, 12, 5, 19, 16
- We can shift the tail of the sorted elements list down and then insert next element into proper position and we get \(k+1 \) sorted elements
 - 4, 5, 7, 12, 19, 16

Example

- Insertion Sort (Algorithm)

```
InsertionSort(A[1..N]: integer array, N: integer) {
    j, P, temp: integer
    for P = 2 to N {
        temp := A[P];
        j := P;
        while j > 1 and A[j-1] > temp do
        A[j] := temp;
    }
}
```

- Is Insertion sort in-place?
- Running time = ?
Insertion Sort Characteristics

- **In-place**
- **Running time**
 - Worst case is $O(N^2)$
 - reverse order input
 - must copy every element every time
- **Good sorting algorithm for almost sorted data**
 - Each item is close to where it belongs in sorted order.

“Divide and Conquer”

- Very important strategy in computer science:
 - Divide problem into smaller parts
 - Independently solve the parts
 - Combine these solutions to get overall solution
- **Idea 1:** Divide array into two halves, recursively sort left and right halves, then merge two halves known as *Mergesort*
- **Idea 2:** Partition array into small items and large items, then recursively sort the two sets known as *Quicksort*

Mergesort

- Divide it in two at the midpoint
- Conquer each side in turn (by recursively sorting)
- Merge two halves together

Mergesort Example

Auxiliary Array

- The merging requires an auxiliary array.
Auxiliary Array

- The merging requires an auxiliary array.

```
2 4 8 9 1 3 5 6
1 2 3 4 5
```

Merging

\[
\text{Merge}(A[], T[], \text{left}, \text{right}) : \{
\mid \text{mid, i, j, k, l, target : integer;}
\mid \text{mid := (right + left)/2;}
\mid i := \text{left; } j := \text{mid + 1; target := left;}
\mid \text{while i < mid and j < right do}
\mid \quad \text{if A[i] < A[j] then T[target] := A[i]; i := i + 1;}
\mid \quad \text{else T[target] := A[j]; j := j + 1;}
\mid \quad \text{target := target + 1;}
\mid \quad \text{if i > mid then //left completed/}
\mid \quad \text{for k := left to target-1 do A[k] := T[k];}
\mid \quad \text{if j > right then //right completed/}
\mid \quad \text{k := mid; l := right;}
\mid \quad \text{while k < j do A[k] := A[l]; k := k + 1; l := l - 1;}
\mid \quad \text{for k := left to target-1 do A[k] := T[k];}
\mid \}\}
```

Recursive Mergesort

```
Mergesort(A[], T[], \text{left}, \text{right}) : \{
\mid \text{if left < right then}
\mid \quad \text{mid := (left + right)/2;}
\mid \quad \text{Mergesort(A, T, left, mid);}
\mid \quad \text{Mergesort(A, T, mid+1, right);}
\mid \quad \text{Merge(A, T, left, right);}
\mid \}\}
```

MainMergesort(A[1..n]: integer array, n : integer) : {
\mid T[1..n]: integer array;
\mid Mergesort[A, T, 1, n];
\}

Iterative Mergesort

```
\text{Merge by 1}
\text{Merge by 2}
\text{Merge by 4}
\text{Merge by 8}
```

Iterative Mergesort

IterativeMergesort(A[1..n]: integer array, n : integer) : {
//precondition: n is a power of 2/
  i, m, parity : integer;
  T[1..n]: integer array;
  m := 2; parity := 0;
  while m < n do
    for i = 1 to n – m + 1 by m do
      if parity = 0 then Merge(A,T,i,i+m-1);
      else Merge(T,A,i,i+m-1);
      parity := 1 – parity;
    m := 2*m;
  if parity = 1 then
    for i = 1 to n do A[i] := T[i];
}

How do you handle non-powers of 2?
How can the final copy be avoided?

Mergesort Analysis

• Let T(N) be the running time for an array of N elements
• Mergesort divides array in half and calls itself on the two halves. After returning, it merges both halves using a temporary array
• Each recursive call takes T(N/2) and merging takes O(N)

Mergesort Recurrence Relation

• The recurrence relation for T(N) is:
  › T(1) ≤ c
  • base case: 1 element array constant time
  › T(N) ≤ 2T(N/2) + dN
  • Sorting n elements takes
    – the time to sort the left half
    – plus the time to sort the right half
    – plus an O(N) time to merge the two halves
• T(N) = O(N log N)

Solving the Recurrence

T(n) ≤ 2T(n/2) + dn
Assuming n is a power of 2
≤ 2/2T(n/4) + dn/2 + dn
= 4T(n/4) + 2dn
≤ 4/2T(n/8) + dn/4 + 2dn
= 8T(n/8) + 3dn
... ≤ 2^k T(n/2^k) + kdn
= nT(1) + kdn if n = 2^k
≤ cn + dn log_2 n
= O(n log n)

Properties of Mergesort

• Not in-place
  › Requires an auxiliary array
• Very few comparisons
• Iterative Mergesort reduces copying.
QuickSort

- QuickSort uses a divide and conquer strategy, but does not require the O(N) extra space that MergeSort does.
  - Partition array into left and right sub-arrays
    - the elements in left sub-array are all less than pivot
    - elements in right sub-array are all greater than pivot
  - Recursively sort left and right sub-arrays
  - Concatenate left and right sub-arrays in O(1) time

"Four easy steps"

- To sort an array S
  - If the number of elements in S is 0 or 1, then return. The array is sorted.
  - Pick an element v in S. This is the pivot value.
  - Partition S-{v} into two disjoint subsets, S₁ = {all values x≤v}, and S₂ = {all values x>v}.
  - Return QuickSort(S₁), v, QuickSort(S₂)

The steps of QuickSort

Details, details

- “The algorithm so far lacks quite a few of the details”
- Implementing the actual partitioning
- Picking the pivot
  - want a value that will cause |S₁| and |S₂| to be non-zero, and close to equal in size if possible
- Dealing with cases where the element equals the pivot

QuickSort Partitioning

- Need to partition the array into left and right sub-arrays
  - the elements in left sub-array are ≤ pivot
  - elements in right sub-array are ≥ pivot
- How do the elements get to the correct partition?
  - Choose an element from the array as the pivot
  - Make one pass through the rest of the array and swap as needed to put elements in partitions

Partitioning is done In-Place

- One implementation (there are others)
  - median3 finds pivot and sorts left, center, right
  - Swap pivot with next to last element
  - Set pointers i and j to start and end of array
  - Increment i until you hit element A[i] > pivot
  - Decrement j until you hit element A[j] < pivot
  - Swap A[i] and A[j]
  - Repeat until i and j cross
  - Swap pivot (= A[N-2]) with A[i]
Choose the pivot as the median of three.
Place the pivot and the largest at the right and the smallest at the left.

Choose the pivot as the median of three.
Place the pivot and the largest at the right and the smallest at the left.

Example

Choose the pivot as the median of three.
Place the pivot and the largest at the right and the smallest at the left.

Move i to the right to be larger than pivot.
Move j to the left to be smaller than pivot.
Swap

Example

Recursive Quicksort

Don't use quicksort for small arrays.
CUTOFF = 10 is reasonable.

Alternative Pivot Rules

• Chose A[left]
  ▶ Fast, but may be too biased
• Chose A[random], left < random ≤ right
  ▶ Completely unbiased
  ▶ Will cause relatively even split, but slow
• Median of three, A[left], A[right], A[(left+right)/2]
  ▶ The standard, tends to be unbiased, and does a little sorting on the side.

Quicksort Best Case Performance

• Algorithm always chooses best pivot and splits sub-arrays in half at each recursion
  ▶ T(0) = T(1) = O(1)
  ▶ constant time if 0 or 1 element
  ▶ For N > 1, 2 recursive calls plus linear time for partitioning
  ▶ T(N) = 2T(N/2) + O(N)
  ▶ Same recurrence relation as Mergesort
  ▶ T(N) = O(N log N)
**Quicksort Worst Case Performance**

- Algorithm always chooses the worst pivot – one sub-array is empty at each recursion
  - \( T(N) \leq a \) for \( N \leq C \)
  - \( T(N) \leq T(N-1) + bN \)
  - \( \leq T(N-2) + b(N-1) + bN \)
  - \( \leq T(C) + b(C+1) + ... + bN \)
  - \( \leq a + b(C + C+1 + C+2 + ... + N) \)
  - \( T(N) = O(N^2) \)

- Fortunately, *average case performance* is \( O(N \log N) \) (see text for proof)

**Properties of Quicksort**

- No iterative version (without using a stack).
- Pure quicksort not good for small arrays.
- “In-place”, but uses auxiliary storage because of recursive calls.
- \( O(n \log n) \) average case performance, but \( O(n^2) \) worst case performance.

**Folklore**

- “Quicksort is the best in-memory sorting algorithm.”

- Truth
  - Quick sort uses very few comparisons on average.
  - Quick sort does have good performance in the memory hierarchy.
    - Small footprint
    - Good locality