CSE 326: Data Structures Disjoint Set Union/Find (part 2)

Brian Curless
Spring 2008

Announcements (5/21/08)

- Homework due beginning of class on Friday.

- Reading for this lecture: Chapter 8.

**Thurs, office "hour"
10 - 10:30
11:30 - 12:00**

Alternate Explanation of the Comparison-based Sorting Bound

At each decision point, one child has $\leq \frac{1}{2}$ of the options remaining, the other has $\geq \frac{1}{2}$ remaining.

Worst case: we always end up with $\geq \frac{1}{2}$ remaining.

Best outcome, in the worst case: we always end up with **exactly** $\frac{1}{2}$ remaining.

Thus, in the worst case, the best we can hope for is halving the space d times (with d comparisons), until we have an answer, i.e., until the space is reduced to size $= 1$.

The space starts at $N!$ in size, and halving d times means multiplying by $\frac{1}{2^d}$, giving us a lower bound on the worst case:

$$\frac{N!}{2^d} = 1 \Rightarrow N! = 2^d \Rightarrow d = \log_2(N!) \in \Omega(N \log N)$$
Implementation: Take 1

Approach:
- Each set is a doubly-linked list (with pointer to last element).
- Store set name with object.

Find: get set name of object
- Worst case complexity? $O(n)$

Union: put one list on the end of the other, update set names of objects to be all the same
- Worst case complexity? $O(n)$

Implementation: Take 2

Approach:
- Each set is a doubly-linked list (with pointer to last element).
- Front of list is set identifier.

Find: traverse linked list until reaching the front
- Worst case complexity? $O(n)$

Union: put one list on the end of the other
- Worst case complexity? $O(1)$

Union/Find Trade-off

- Known result:
 - Find and Union cannot both be done in worst-case $O(1)$ time with any data structure.
- We will instead aim for good amortized complexity.
- For m operations on n elements:
 - Target complexity: $O(m)$ i.e. $O(1)$ amortized

Tree-based Approach

We’ll build on the “fast union” approach (linked list, with head node as set name, no set names explicitly stored in nodes).

Improvements:
- Instead of linked lists, use a forest of trees (one tree per set).
- Root of each tree is the set name.
- Allow large fanout. Why is this good?

Limits height <= find is fast
Up-Tree for DS Union/Find

Observation: we will only traverse these trees upward from any given node to find the root.

Idea: reverse the pointers (make them point up from child to parent). The result is an up-tree.

Initial state

1 2 3 4 5 6 7

Intermediate state

1 2 3 4 5 6 7

Roots are the names of each set.

Find Operation

Find(x) follow x to the root and return the root.

Find(6) = 7

Union Operation

Union(i, j) - assuming i and j roots, point i to j.

Union(1, 7)

Simple Implementation

- Array of indices

\[
\begin{matrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
-1 & 1 & -1 & 7 & 7 & 5 & -1 \\
\end{matrix}
\]

up[x] = -1 means x is a root.
Implementation

```c
void Union(int x, int y) {
    up[x] = y;
}
```

```c
int Find(int x) {
    while(up[x] >= 0) {
        x = up[x];
    }
    return x;
}
```

runtime for Union: \(O(1) \)
runtime for Find: \(O(n) \)

Amortized complexity is no better.

A Bad Case

<table>
<thead>
<tr>
<th>Union(1,2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Union(2,3)</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>Union(n-1,n)</td>
</tr>
</tbody>
</table>

Find(1) \(n \) steps!!

Two Big Improvements

Can we do better? Yes!

1. Union-by-size
 - Improve `Union` so that `Find` only takes worst case time of \(\Theta(\log n) \).

2. Path compression
 - Improve `Find` so that, with Union-by-size, `Find` takes amortized time of almost \(\Theta(1) \).

Union-by-Size

Union-by-size
- Always point the smaller tree to the root of the larger tree

S-Union(1,7)
Example Again

Analysis of Union-by-Size

- Theorem: With union-by-size an up-tree of height h has size at least 2^h.
- Proof by induction
 - Base case: $h = 0$. The up-tree has one node, $2^0 = 1$
 - Inductive hypothesis: Assume true for $h-1$
 - Inductive step: Then true for h.
 - Observation: tree gets taller only as a result of a union.

$$T = S\text{-Union}(T_1, T_2)$$

$$S(T_1) \geq S(T_2) \geq 2^{h-1}$$

$$S(T) = S(T_1) + S(T_2) \geq 2^{h-1} + 2^{h-1} = 2^h$$

$$\implies S(T) \geq 2^h$$

Analysis of Union-by-Size

- What is worst case complexity of Find(x) in an up-tree forest of n nodes?
 - All nodes in one set of height h.
 - $n \geq 2^h$
 - $\log_2 n \geq h$
 - $h \leq \log_2 n$ and $\Theta(\log_2 n)$
- (Amortized complexity is no better.)

Worst Case for Union-by-Size

- $n/2$ Unions-by-size
- $n/4$ Unions-by-size
Example of Worst Cast (cont’)

After \(n - 1 = n/2 + n/4 + \ldots + 1 \) Unions-by-size

If there are \(n = 2^k \) nodes then the longest path from leaf to root has length \(k \).

Array Implementation

Can store separate size array:

<table>
<thead>
<tr>
<th>Up</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>-1</td>
</tr>
</tbody>
</table>

Elegant Array Implementation

Better, store sizes in the up array:

<table>
<thead>
<tr>
<th>Up</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>-4</td>
</tr>
</tbody>
</table>

Negative up-values correspond to sizes of roots.

Code for Union-by-Size

```c
S-Union(i, j) {
    // Collect sizes
    si = -up[i];
    sj = -up[j];

    // verify i and j are roots
    assert(si >= 0 && sj >=0)
    // point smaller sized tree to
    // root of larger, update size
    if (si < sj) {
        up[i] = j;
        up[j] = -(si + sj);
    } else {
        up[j] = i;
        up[i] = -(si + sj);
    }
}
```
Path Compression

- To improve the amortized complexity, we'll borrow an idea from splay trees:
 - When going up the tree, improve nodes on the path!
- On a Find operation point all the nodes on the search path directly to the root. This is called “path compression.”

Self-Adjustment Works

Your turn

Draw the result of Find(e):

Code for Path Compression Find

```cpp
PC-Find(i) {
    // find root
    j = i;
    while (up[j] >= 0) {
        j = up[j];
        root = j;
    }
    // compress path
    if (i != root) {
        parent = up[i];
        while (parent != root) {
            up[i] = root;
            i = parent;
            parent = up[parent];
        }
    }
    return(root);
}
```
Complexity of Union-by-Size + Path Compression

- Worst case time complexity for...
 - ...a single Union-by-size is: \(O(1)\)
 - ...a single PC-Find is: \(O(\log n)\)

- Time complexity for \(m \geq n\) operations on \(n\) elements has been shown to be \(O(m \log^* n)\).
 [See Weiss for proof.]
 - Amortized complexity is then \(O(\log^* n)\)
 - What is \(\log^*\)?

\[\log^* n = \text{number of times you need to apply log to bring value down to at most 1}\]

\[
\begin{align*}
\log^* 2 &= 1 \\
\log^* 4 &= \log^* 2^2 = 2 \\
\log^* 16 &= \log^* 2^{2^2} = 3 \quad (\log \log 16 = 1) \\
\log^* 65536 &= \log^* 2^{2^{2^2}} = 4 \quad (\log \log \log 65536 = 1) \\
\log^* 2^{65536} &= \ldots \ldots \ldots \approx \log^* (2 \times 10^{19,728}) = 5
\end{align*}
\]

\(\log^* n \leq 5\) for all reasonable \(n\).

The Tight Bound

In fact, Tarjan showed the time complexity for \(m \geq n\) operations on \(n\) elements is:

\(\Theta(m \alpha(m, n))\)

Amortized complexity is then \(\Theta(\alpha(m, n))\).

What is \(\alpha(m, n)\)?
 - Inverse of Ackermann’s function.
 - For reasonable values of \(m, n\), grows even slower than \(\log^* n\). So, it’s even “more constant.”

Proof is beyond scope of this class. A simple algorithm can lead to incredibly hardcore analysis!