CSE 326: Data Structures
Binary Search Trees

Brian Curless
Spring 2008

Announcements

- HW #3 will be assigned this afternoon, due at beginning of class next Friday.
- Project 2A due next Wed. night.

Outline

- Dictionary ADT / Search ADT
- Quick Tree Review
- Binary Search Trees

ADTs Seen So Far

- Stack
 - Push
 - Pop
- Queue
 - Enqueue
 - Dequeue
- Priority Queue
 - Insert
 - DeleteMin

Then there is decreaseKey...
The Dictionary ADT

- Data:
 - a set of (key, value) pairs

- Operations:
 - Insert (key, value)
 - Find (key)
 - Remove (key)

```
insert(curless, ....)
find(evacn8)
```

evanc8
Smith, Raymond, ...
evanc8
Laura
Effinger-Dean
CSE 394
curless
Brian
Curless
CSE 664
evanc8
Smith
Raymond
CSE 220

The Dictionary ADT is also called the “Map ADT”

A Modest Few Uses

- Sets
- Dictionaries
- Networks : Router tables
- Operating systems : Page tables
- Compilers : Symbol tables

Probably the most widely used ADT!

Implementations

- Binary tree is
 - a root
 - left subtree (maybe empty)
 - right subtree (maybe empty)

- Representation:

```
Data
left pointer right pointer
```

Binary Trees

- Unsorted Linked-list
 - insert \(O(i) \)
 - find \(O(n) \)
 - delete \(O(n) \)

- Unsorted array
 - insert \(O(i) \)
 - find \(O(n) \)
 - delete \(O(n) \)

- Sorted array
 - insert \(O(\log n + n) \)
 - find \(O(\log n) \)
 - delete \(O(n) \)
Binary Tree: Representation

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

Three types:
- Pre-order: Root, left subtree, right subtree
- In-order: Left subtree, root, right subtree
- Post-order: Left subtree, right subtree, root

Inorder Traversal

```java
void traverse(BNode t){
    if (t != NULL)
        traverse (t.left);
    process t.element;
    traverse (t.right);
}
```

Binary Tree: Special Cases

- Complete Tree
- Perfect Tree
- "List" Tree
Binary Tree: Some Numbers…

Recall: height of a tree = longest path from root to leaf.

For binary tree of height h:
- max # of leaves: 2^h
- max # of nodes: $2^{h+1} - 1$
- min # of leaves: 1
- min # of nodes: $h+1$

Binary Search Tree Data Structure

- Structural property
 - each node has ≤ 2 children
 - result:
 - storage is small
 - operations are simple

- Order property
 - all keys in left subtree smaller than root’s key
 - all keys in right subtree larger than root’s key
 - result: easy to find any given key

Example and Counter-Example

What would the average depth be for a well-balanced tree? $\log(N)$
Find in BST, Recursive

Node Find(Object key,
 Node root) {
 if (root == NULL)
 return NULL;
 if (key < root.key)
 return Find(key, root.left);
 else if (key > root.key)
 return Find(key, root.right);
 else
 return root;
}

Runtime: $O(n)$

Find in BST, Iterative

Node Find(Object key,
 Node root) {
 while (root != NULL &&
 root.key != key) {
 if (key < root.key)
 root = root.left;
 else
 root = root.right;
 }
 return root;
}

Runtime: $O(n)$

Bonus: FindMin/FindMax

- Find minimum

 ![Diagram](Diagram1.png)

- Find maximum

 ![Diagram](Diagram2.png)

Insert in BST

1. Insert(13)
2. Insert(8)
3. Insert(31)

Insertions happen only at the leaves – easy!

Runtime: $O(n)$
BuildTree for BST

- Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into an initially empty BST.

 If inserted in given order, what is the tree? What big-O runtime for this kind of sorted input?

 \[\sum_{i=0}^{n} i = \frac{n(n+1)}{2} \in \Theta(n^2) \]

 \[O(n^2) \]

 \[O(n) \]

- If inserted median first, then left median, right median, etc., what is the tree? What is the big-O runtime for this kind of sorted input?

 \[5, 3, 7, 2, 8, 9, 6, 1, 9 \]

 \[O(n \log n) \]

 \[\Omega(\frac{n}{2} \log \frac{n}{2}) \]

 \[\Theta(n \log n) \]

 \[\Omega(n \log n) \]

Deletion in BST

- Removing an item disrupts the tree structure.
- Basic idea: find the node that is to be removed. Then “fix” the tree so that it is still a binary search tree.
- Three cases:
 - node has no children (leaf node)
 - node has one child
 - node has two children

Why might deletion be harder than insertion?
Deletion – The Leaf Case

Delete(17)

Deletion – The One Child Case

Delete(15)

Deletion – The Two Child Case

Delete(5)

What can we replace 5 with?

Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees

Options:
- *succ* from right subtree: findMin(t.right)
- *pred* from left subtree: findMax(t.left)

Now delete the original node containing *succ* or *pred*
- Leaf or one child case – easy!
Finally…

Balanced BST

Observations
- BST: the shallower the better!
- For a BST with \(n \) nodes
 - Average depth (averaged over all possible insertion orderings) is \(O(\log n) \)
 - Worst case maximum depth is \(O(n) \)
- Simple cases such as insert(1, 2, 3, ..., \(n \)) lead to the worst case scenario

Solution: Require a **Balance Condition** that
1. ensures depth is \(O(\log n) \) — strong enough!
2. is easy to maintain — not too strong!