CSE 326: Data Structures

Priority Queues:
Leftist Heaps

Brian Curless
Spring 2008

New Heap Operation: Merge

Given two heaps, merge them into one heap
– first attempt: insert each element of the smaller heap into the larger.
 \[\text{runtime: } \Omega(n \log n) \text{ worst} \]
 \[\Omega(n) \text{ average} \]
– second attempt: concatenate binary heaps’ arrays and run buildHeap.
 \[\text{runtime: } \Theta(n) \]

Leftist Heaps

Idea:
Focus all heap maintenance work in one small part of the heap

Leftist heaps:
1. Binary trees
2. Most nodes are on the left
3. All the merging work is done on the right

Definition: Null Path Length

null path length (npl) of a node \(x \) = the number of nodes between \(x \) and a null in its subtree
OR
\[npl(x) = \min \text{ distance to a descendant with 0 or 1 children} \]

- \(npl(\text{null}) = -1 \)
- \(npl(\text{leaf}) = 0 \)
- \(npl(\text{single-child node}) = 0 \)

Equivalent definition:
\[npl(x) = 1 + \min\{npl(\text{left}(x)), npl(\text{right}(x))\} \]
Definition: Null Path Length

Another useful definition:

\(npl(x)\) is the height of the largest perfect binary tree that is both itself rooted at \(x\) and contained within the subtree rooted at \(x\).

Leftist Heap Properties

- **Order property**
 - parent’s priority value is \(\leq\) to childrens’ priority values
 - result: minimum element is at the root
 - (Same as binary heap)

- **Structure property**
 - For every node \(x\), \(npl(\text{left}(x)) \geq npl(\text{right}(x))\)
 - result: tree is at least as “heavy” on the left as the right

(Terminology: we will say a leftist heap’s tree is a leftist tree.)

Are These Leftist?

Observations

Are leftist trees always...
- complete? **No**
- balanced? **Yes**!

Consider a subtree of a leftist tree...
- is it leftist? **Yes**
Right Path in a Leftist Tree is Short (#1)

Claim: The right path (path from root to rightmost leaf) is as short as any in the tree.

Proof: (By contradiction)

Pick a shorter path: \(D_1 < D_2 \)
Say it diverges from right path at \(x \)

\[npl(L) \leq D_1 - 1 \quad \text{because of the path of length } D_1 - 1 \text{ to null} \]

\[npl(R) \geq D_2 - 1 \quad \text{because every node on right path is leftist} \]

Leftist property at \(x \) violated!

Right Path in a Leftist Tree is Short (#2)

Claim: If the right path has \(r \) nodes, then the tree has at least \(2^r - 1 \) nodes.

Proof: (By induction)

Base case: \(r = 1 \), Tree has at least \(2^1 - 1 = 1 \) node

Inductive step: Assume true for \(r - 1 \). Prove for tree with right path at least \(r \).

1. Right subtree: right path of \(r - 1 \) nodes
 \[\Rightarrow 2^{r-1} - 1 \text{ right subtree nodes (by induction)} \]
2. Left subtree: also right path of length at least \(r - 1 \) (prev. slide)
 \[\Rightarrow 2^{r-1} - 1 \text{ left subtree nodes (by induction)} \]

\[\Rightarrow \text{Total tree size: } (2^{r-1} - 1) + (2^{r-1} - 1) + 1 = 2^r - 1 \]

Why do we have the leftist property?

Because it guarantees that:
- the right path is really short compared to the number of nodes in the tree
- A leftist tree of \(N \) nodes, has a right path of at most \(\log_2(N+1) \) nodes

Idea – perform all work on the right path
Merge two heaps (basic idea)

- Put the root with smaller value as the new root.
- Hang its left subtree on the left.
- Recursively merge its right subtree and the other tree.
- Before returning from recursion:
 - Update npl of merged root.
 - Swap left and right subtrees just below root, if needed, to keep leftist property of merged result.

Merging Two Leftist Heaps

Recursive calls to merge(T_1, T_2): returns one leftist heap containing all elements of the two (distinct) leftist heaps T_1 and T_2

merge

T1

a

b

merge

L1

R1

L2

R2

a < b

merge

L1

R1

T2

b

L2

R2

Leftest Merge Example

merge

5

3

merge

6

1

1

merge

7

0

8

0

5

5

merge

8

0

10

0

8

0

0

0
Sewing Up the Example

Other Heap Operations

- *insert* ?
- *deleteMin* ?

Operations on Leftist Heaps

- **merge** with two trees of total size n: $O(\log n)$
- **insert** with heap size n: $O(\log n)$
 - pretend node is a size 1 leftist heap
 - insert by merging original heap with one node heap

- **deleteMin** with heap size n: $O(\log n)$
 - remove and return root
 - merge left and right subtrees
Leftist Heaps: Summary

Good
- One core operation: merge
- merge is $O(\log n)$

Bad
- Not array-based
- no field: pointers