CSE 326: Data Structures

Asymptotic Analysis (revised)

Brian Curless
Spring 2008

Project 1

- Soundblaster! Reverse a song
 - a.k.a., “backmasking”
- Implement a stack to make the “Reverse” program work
 - Implement as array and as linked list
- Read the website
 - Detailed description of assignment
 - Detailed description of how programming projects are graded
- Due: Midnight (11:59:59+8 PM, PDT), April 9
 - Electronic submission

Other announcements

- Both sections are now in EE 025.

- Homework requires you get the textbook (it’s a good book).

- Laura rocks.

- Homework #1 is now assigned.
 - Due at the beginning of class next Friday (April 11).

Algorithm Analysis

- Correctness:
 - Does the algorithm do what is intended.

- Performance:
 - Speed
 - Memory

- Why analyze?
 - To make good design decisions
 - Enable you to look at an algorithm (or code) and identify the bottlenecks, etc.

- time complexity
- space complexity
Correctness

Correctness of an algorithm is established by proof. Common approaches:

- (Dis)proof by counterexample
- Proof by contradiction
- Proof by induction
 • Especially useful in recursive algorithms

Proof by Induction

- **Base Case:** The algorithm is correct for a base case or two by inspection.

- **Inductive Hypothesis (n=k):** Assume that the algorithm works correctly for the first k cases.

- **Inductive Step (n=k+1):** Given the hypothesis above, show that the k+1 case will be calculated correctly.

Recursive algorithm for \textit{sum}

- Write a recursive function to find the sum of the first \textbf{n} integers stored in array \textbf{v}.

 \[
 \text{sum(integer array } v, \text{ integer } n) \text{ returns integer}
 \]
 \[
 \text{if } n = 0 \text{ then}
 \]
 \[
 \text{sum = 0}
 \]
 \[
 \text{else}
 \]
 \[
 \text{sum = nth number + sum of first } n-1 \text{ numbers}
 \]
 \[
 \text{return sum}
 \]

Program Correctness by Induction

- **Base Case:**
 \[
 \text{sum}(v, 0) = 0. \checkmark
 \]

- **Inductive Hypothesis (n=k):**
 Assume \text{sum}(v, k) correctly returns sum of first k elements of \textbf{v}, i.e. \(v[0]+v[1]+\ldots+v[k-1]\)

- **Inductive Step (n=k+1):**
 \[
 \text{sum}(v, k+1) \text{ returns}
 \]
 \[
 v[k]+\text{sum}(v, k)= \text{(by inductive hyp.)}
 \]
 \[
 v[k]+(v[0]+v[1]+\ldots+v[k-1])=
 \]
 \[
 v[0]+v[1]+\ldots+v[k-1]+v[k] \checkmark
 \]
Analyzing Performance

We will focus on analyzing time complexity. First, we have some “rules” to help measure how long it takes to do things:

- Basic operations: Constant time
- Consecutive statements: Sum of times
- Conditionals: Test, plus larger branch cost
- Loops: Sum of iterations
- Function calls: Cost of function body
- Recursive functions: Solve recurrence relation...

Second, we will be interested in best and worst case performance.

Complexity cases

We’ll start by focusing on two cases.

Problem size N

- Worst-case complexity: max # steps algorithm takes on “most challenging” input of size N
- Best-case complexity: min # steps algorithm takes on “easiest” input of size N

Exercise - Searching

```c
bool ArrayFind(int array[], int n, int key){
    // Insert your algorithm here
    Linear search
    Binary Search
}
```

Linear Search Analysis

```c
bool LinearArrayFind(int array[], int n, int key){
    int i, n;
    for( int i = 0; i < n; i++ ) {
        if( array[i] == key ) { // Found it!
            return true;
        }
    }
    return false;
}
```

```
Best Case: T_{best}(n) = \{4, n>0 \}
Worst Case: T_{worst}(n) = 3n+3
```
Binary Search Analysis

```
bool BinArrayFind( int array[], int low, int high, int key ) {
    if( low > high ) return false;
    int mid = (high + low) / 2;
    if( key == array[mid] )
        return true;
    else if( key < array[mid] )
        return BinArrayFind( array, low, mid-1, key );
    else
        return BinArrayFind( array, mid+1, high, key );
}
```

Solving Recurrence Relations

1. Determine the recurrence relation. What is/are the base case(s)?

2. "Expand" the original relation to find an equivalent general expression in terms of the number of expansions.

3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case.

Linear Search vs Binary Search

<table>
<thead>
<tr>
<th></th>
<th>Linear Search</th>
<th>Binary Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Case</td>
<td>(n > 0)</td>
<td>4</td>
</tr>
<tr>
<td>Worst Case</td>
<td>(3n+3)</td>
<td>(5\log_{2}n + 7)</td>
</tr>
</tbody>
</table>

Linear Search vs Binary Search

<table>
<thead>
<tr>
<th></th>
<th>Linear Search</th>
<th>Binary Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Case</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Worst Case</td>
<td>(3n+3)</td>
<td>(5\log_{2}n + 7)</td>
</tr>
</tbody>
</table>

- C++ (2x) \(\frac{1}{2}(3n+3) \)
- Loop-variant (2x) \(\frac{1}{4}(3n+3) \)
- SuperCPU (8x) \(\frac{1}{32}(3n+3) \)

\(n > 3 \)
\(n > 7 \)
\(n > 15 \)
\(n > 500 \)
Fast Computer vs. Slow Computer

Fast Computer vs. Smart Programmer (round 1)

Fast Computer vs. Smart Programmer (round 2)

Asymptotic Analysis

- Asymptotic analysis looks at the order of the running time of the algorithm
 - A valuable tool when the input gets “large”
 - Ignores the effects of different machines or different implementations of same algorithm

- Comparing worst case search examples:
 \[\tau_{\text{worst}}^{\text{LS}}(n) = 3n + 3 \quad \text{vs.} \quad \tau_{\text{worst}}^{\text{BS}}(n) = 5 \left\lfloor \log_2 n \right\rfloor + 7 \]
 \[\lim_{n \to \infty} \frac{3n + 3}{5 \log_2 n + 7} = \lim_{n \to \infty} \frac{3n}{5 \log_2 n} = \lim_{n \to \infty} \frac{2}{5 \log_2 n} = 0 \] (L'Hôpital's rule)
Asymptotic Analysis

- Intuitively, to find the asymptotic runtime, throw away the constants and low-order terms

 - Linear search is $T_{\text{worst}}^{Ls}(n) = 3n + 3 \in O(n)$

 - Binary search is $T_{\text{worst}}^{Bs}(n) = 5\lceil \log_2 n \rceil + 7 \in O(\log n)$

Remember: the “fastest” algorithm has the slowest growing function for its runtime

Eliminate low order terms
- $4n + 5 \Rightarrow 4n$
- $0.5n \log n + 2n + 7 \Rightarrow 0.5n \log n$
- $n^3 + 3 \cdot 2^n + 8n \Rightarrow 3 \cdot 2^n$

Eliminate coefficients
- $4n \Rightarrow n$
- $0.5n \log n \Rightarrow n \log n$
- $3 \cdot 2^n \Rightarrow 2^n$

Properties of Logs

Basic:
- $A^{\log_A B} = B$
- $\log_A A = 1$

Independent of base:
- $\log(AB) = \log A + \log B$
- $\log(A/B) = \log A - \log B$
- $\log(A^B) = B \log A$
- $\log((A^B)^C) = BC \log A$

Properties of Logs

$log_A(B)$ vs. $log_C(B)$

$log_A(B) = \frac{1}{\log_C A} \cdot \log_C B$

$= k \cdot \log_C B$
Another example

- Eliminate low-order terms
- Eliminate constant coefficients

\[n^3 \log_8(10n^2) + 100n^2 \]
\[n^3 \left(\log_8 10 + \log_8 n^2 \right) \]
\[n^3 \log_8 10 + n^3 \log_8 n^2 \]
\[n^3 \log n^2 \]
\[n^3 \log n \]

Order Notation: Intuition

\[a(n) = n^3 + 2n^2 \]
\[b(n) = 100n^2 + 1000 \]

Although not yet apparent, as \(n \) gets “sufficiently large”, \(a(n) \) will be “greater than or equal to” \(b(n) \).

Definition of Order Notation

- Upper bound: \(h(n) \in O(f(n)) \)
 Exist positive constants \(c \) and \(n_0 \) such that
 \[h(n) \leq c f(n) \] for all \(n \geq n_0 \)
- Lower bound: \(h(n) \in \Omega(g(n)) \)
 Exist positive constants \(c \) and \(n_0 \) such that
 \[h(n) \geq c g(n) \] for all \(n \geq n_0 \)
- Tight bound: \(h(n) \in \Theta(f(n)) \)
 When both hold:
 \[h(n) \in O(f(n)) \]
 \[h(n) \in \Omega(f(n)) \]

Definition of Order Notation

\[O(f(n)) : a \text{ set or class of functions} \]

\[h(n) \in O(f(n)) \text{ iff there exist positive constants } c \text{ and } n_0 \text{ such that:} \]
\[h(n) \leq c f(n) \text{ for all } n \geq n_0 \]

Example:
\[100n^2 + 1000 \leq \frac{1}{2} (n^3 + 2n^2) \text{ for all } n \geq 198 \]
So \(b(n) \in O(a(n)) \)
Order Notation: Example

100n^2 + 1000 \leq \frac{1}{2}(n^3 + 2n^2) \text{ for all } n \geq 198
So b(n) \in O(n^3) \quad b(n) \in \Omega(n^2) \quad b(n) \in \Theta(n^2)

Order Notation: Worst Case Binary Search

Some Notes on Notation

Sometimes you’ll see (e.g., in Weiss)

\[h(n) = O(f(n)) \]

or

\[h(n) \text{ is } O(f(n)) \]

These are equivalent to

\[h(n) \in O(f(n)) \]

Big-O: Common Names

- constant: \(O(1) \)
- logarithmic: \(O(\log n) \) \((\log k, \log n, \log n^2 \in O(\log n)) \)
- linear: \(O(n) \)
- log-linear: \(O(n \log n) \)
- quadratic: \(O(n^2) \)
- cubic: \(O(n^3) \)
- polynomial: \(O(n^k) \) \((k \text{ is a constant}) \)
- exponential: \(O(c^n) \) \((c \text{ is a constant } > 1) \)
Meet the Family

- $O(f(n))$ is the set of all functions asymptotically less than or equal to $f(n)$
- $o(f(n))$ is the set of all functions asymptotically strictly less than $f(n)$
- $\Omega(g(n))$ is the set of all functions asymptotically greater than or equal to $g(n)$
- $\omega(g(n))$ is the set of all functions asymptotically strictly greater than $g(n)$
- $\Theta(f(n))$ is the set of all functions asymptotically equal to $f(n)$

Meet the Family, Formally

- $h(n) \in O(f(n))$ iff
 There exist $c > 0$ and $n_0 > 0$ such that $h(n) \leq c f(n)$ for all $n \geq n_0$
- $h(n) \in o(f(n))$ iff
 There exists an $n_0 > 0$ such that $h(n) < c f(n)$ for all $c > 0$ and $n \geq n_0$
 - This is equivalent to: $\lim_{n \to \infty} h(n)/f(n) = 0$
- $h(n) \in \Omega(g(n))$ iff
 There exist $c > 0$ and $n_0 > 0$ such that $h(n) \geq c g(n)$ for all $n \geq n_0$
- $h(n) \in \omega(g(n))$ iff
 There exists an $n_0 > 0$ such that $h(n) > c g(n)$ for all $c > 0$ and $n \geq n_0$
 - This is equivalent to: $\lim_{n \to \infty} h(n)/g(n) = \infty$
- $h(n) \in \Theta(f(n))$ iff
 $h(n) \in O(f(n))$ and $h(n) \in \Omega(f(n))$
 - This is equivalent to: $\lim_{n \to \infty} h(n)/f(n) = c \neq 0$

Big-Omega et al. Intuitively

<table>
<thead>
<tr>
<th>Asymptotic Notation</th>
<th>Mathematics Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>\leq</td>
</tr>
<tr>
<td>Ω</td>
<td>\geq</td>
</tr>
<tr>
<td>Θ</td>
<td>$=$</td>
</tr>
<tr>
<td>o</td>
<td>$<$</td>
</tr>
<tr>
<td>ω</td>
<td>$>$</td>
</tr>
</tbody>
</table>

Complexity cases (revisited)

Problem size N

- **Worst-case complexity**: \max # steps algorithm takes on “most challenging” input of size N
- **Best-case complexity**: \min # steps algorithm takes on “easiest” input of size N
- **Average-case complexity**: avg # steps algorithm takes on random inputs of size N
- **Amortized complexity**: \max total # steps algorithm takes on M “most challenging” consecutive inputs of size N, divided by M (i.e., divide the max total by M).
Bounds vs. Cases

Two orthogonal axes:

- **Bound Flavor**
 - Upper bound (O, o)
 - Lower bound (Ω, ω)
 - Asymptotically tight (Θ)

- **Analysis Case**
 - Worst Case (Adversary), $T_{\text{worst}}(n)$
 - Average Case, $T_{\text{avg}}(n)$
 - Best Case, $T_{\text{best}}(n)$
 - Amortized, $T_{\text{amort}}(n)$

One can estimate the bounds for any given case.