The Shortest Path Problem

Given a graph G, and vertices s and t in G, find the shortest path from s to t.

Two cases: weighted and unweighted.

For a path $p = v_0 v_1 v_2 \ldots v_k$

- **unweighted length** of path $p = k$ (a.k.a. **length**)

- **weighted length** of path $p = \sum_{i=0..k-1} c_{i,i+1}$ (a.k.a. **cost**)

Path length equals path cost when?

Single Source Shortest Paths (SSSP)

Given a graph G and vertex s, find the shortest paths from s to all vertices in G.

- Is this harder or easier than the previous problem?
Variations of SSSP

- Weighted vs. unweighted
- Directed vs undirected
- Cyclic vs. acyclic
- Positive weights only vs. negative weights allowed
- Shortest path vs. longest path
- ...

Applications

- Network routing
- Driving directions
- Cheap flight tickets
- Critical paths in project management (see textbook)
- ...

SSSP: Unweighted Version

Idea?

```c
void Graph::unweighted (Vertex s){
  Queue q(NUM_VERTICES);
  Vertex v, w;
  q.enqueue(s);
  s.dist = 0;
  while (!q.isEmpty()){
    v = q.dequeue();
    for each w adjacent to v
      if (w.dist == INFINITY){
        w.dist = v.dist + 1;
        w.path = v;
        q.enqueue(w);
      }
  }
}
```

each edge examined at most once – if adjacency lists are used

each vertex enqueued at most once

total running time: O()
Dijkstra’s Algorithm: Idea

Adapt BFS to handle weighted graphs

Two kinds of vertices:
- Finished or known vertices
 - Shortest distance has been computed
- Unknown vertices
 - Have tentative distance

At each step:
1) Pick closest unknown vertex
2) Add it to known vertices
3) Update distances
Dijkstra’s Algorithm: Pseudocode

Initialize the cost of each node to ∞
Initialize the cost of the source to 0

While there are unknown nodes left in the graph
 Select an unknown node a with the lowest cost
 Mark a as known
 For each node b adjacent to a
 if(cost(a) + cost(a,b) < cost(b))
 cost(b) = cost(a) + cost(a,b)
 previous(b) = a

Important Features

• Once a vertex is made known, the cost of the shortest path to that node is known
• While a vertex is still not known, another shorter path to it might still be found
• The shortest path itself can be found by following the backward pointers stored at each node

Dijkstra’s Algorithm in action

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Visited?</th>
<th>Cost</th>
<th>Found by</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>??</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>??</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>??</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>??</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dijkstra’s Algorithm in action

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Visited?</th>
<th>Cost</th>
<th>Found by</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td><=2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td><=1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td><=4</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>??</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dijkstra's Algorithm in action

Vertex	Visited?	Cost	Found by
A | Y | 0 | A
B | <=2 | A
C | Y | 1 | A
D | <=4 | A
E | <=12 | C
F | ?? | B
G | ?? | B
H | ?? | B

Dijkstra's Algorithm in action

Vertex	Visited?	Cost	Found by
A | Y | 0 | A
B | Y | 2 | A
C | Y | 1 | A
D | <=4 | A
E | <=12 | C
F | <=4 | B
G | ?? | B
H | ?? | B

Dijkstra's Algorithm in action

Vertex	Visited?	Cost	Found by
A | Y | 0 | A
B | Y | 2 | A
C | Y | 1 | A
D | <=4 | A
E | <=12 | C
F | <=4 | B
G | ?? | B
H | ?? | B

Dijkstra's Algorithm in action

Vertex	Visited?	Cost	Found by
A | Y | 0 | A
B | Y | 2 | A
C | Y | 1 | A
D | <=4 | A
E | <=12 | C
F | <=4 | B
G | ?? | B
H | <=7 | F
Dijkstra's Algorithm in action

Vertex	Visited?	Cost	Found by
A | Y | 0 | A
B | Y | 2 | A
C | Y | 1 | A
D | Y | 4 | A
E | <=12 | C |
F | Y | 4 | B
G | <=8 | H |
H | Y | 7 | F

Your turn

Vertex	Visited?	Cost	Found by
\(v_0 \) | | | \(s \)
\(v_1 \) | | |
\(v_2 \) | | |
\(v_3 \) | | |
\(v_4 \) | | |
\(v_5 \) | | |
\(v_6 \) | | |
Dijkstra’s Algorithm: Implementation

Initialize the cost of each node to ∞
Initialize the cost of the source to 0

While there are unknown nodes left in the graph

Select the unknown node a with the lowest cost
Mark a as known
For each node b adjacent to a

$\text{cost}(b) = \min(\text{cost}(b), \text{cost}(a) + \text{cost}(a, b))$
$\text{previous}(b) = a$ (if we updated b's cost)

What data structures should we use?

Running time?

Dijkstra’s Algorithm: Summary

- Classic algorithm for solving SSSP in weighted graphs without negative weights
- A greedy algorithm (irrevocably makes decisions without considering future consequences)

Intuition for correctness:
- shortest path from source vertex to itself is 0
- cost of going to adjacent nodes is at most edge weights
- cheapest of these must be shortest path to that node
- update paths for new node and continue picking cheapest path

Running time: $O(|E| \log |V|)$ – there are $|E|$ edges to examine, and each one causes a heap operation of time $O(\log |V|)$
Correctness: The Cloud Proof

Next shortest path from inside the known cloud

How does Dijkstra's decide which vertex to add to the Known set next?
• If path to V is shortest, path to W must be at least as long
 (or else we would have picked W as the next vertex)
• So the path through W to V cannot be any shorter!

Correctness: Inside the Cloud

Prove by induction on # of nodes in the cloud:
Initial cloud is just the source with shortest path 0
Assume: Everything inside the cloud has the correct shortest path
Inductive step: Only when we prove the shortest path to some node v (which is not in the cloud) is correct, we add it to the cloud

When does Dijkstra’s algorithm not work?

The Trouble with Negative Weight Cycles

What’s the shortest path from A to E?

Problem?

Dijkstra’s vs BFS

At each step:
1) Pick closest unknown vertex
2) Add it to finished vertices
3) Update distances

At each step:
1) Pick vertex from queue
2) Add it to visited vertices
3) Update queue with neighbors

Dijkstra’s Algorithm
Breadth-first Search

Some Similarities: