Announcements (5/7/08)

- Project 2B due today.
- Homework #4 due on Friday, beginning of class
- Project #3 assigned on Friday
 - Partner signups by 3pm Friday
- Section: project warm-up, midterms returned, …
- Reading for this lecture: Chapter 5.

Hash Tables

• Find, insert, delete: constant time on average!
• A **hash table** is an array of some fixed size.
• General idea:

 ![Hash Table Diagram](image)

 Key space (e.g., integers, strings) → hash function: index = h(K) → hash table

 TableSize – 1

Hash Tables

Key space of size M, but we only want to store subset of size N, where N<<M.

- Keys are identifiers in programs. Compiler keeps track of them in a symbol table.
- Keys are student names. We want to look up student records quickly by name.
- Keys are chess configurations in a chess playing program.
- Keys are URLs in a database of web pages.
Simple Integer Hash Functions

- key space = integers
- TableSize = 10
- \(h(K) = K \mod 10 \)
- Insert: 7, 18, 41, 94

Aside: Properties of Mod

To keep hashed values within the size of the table, we will generally do:

\[h(K) = \text{function}(K) \mod \text{TableSize} \]

(In the previous examples, function(K) = K.)

It’s worth noting a couple properties of the mod function:

- \((a + b) \mod c = [(a \mod c) + (b \mod c)] \mod c\)
- \(a \mod c = (a \mod c) \rightarrow (a - b) \mod c = 0\)
- \((a \cdot b) \mod c = [(a \mod c) \cdot (b \mod c)] \mod c\)

Some String Hash Functions

key space = strings
\(K = s_0 \ s_1 \ s_2 \ldots \ s_{m-1} \) (where \(s_i \) are characters)

1. \(h(K) = s_0 \mod \text{TableSize} \)
2. \(h(K) = \left(\sum_{i=0}^{m-1} s_i \right) \mod \text{TableSize} \)
3. \(h(K) = \left(\sum_{i=0}^{m-1} s_i \cdot 128^i \right) \mod \text{TableSize} \)
Hash Function Desiderata
What are some desirable properties for a hash function?

Designing Hash Functions
We’ve seen a few possibilities. The simplest is modular hashing:
\[h(K) = K \mod P \]
where \(P \) is usually just the TableSize.

\(P \) is often chosen to be prime:
- Reduces likelihood of collisions due to patterns in data
- Is useful for guarantees on certain hashing strategies (as we’ll see)

But what would be a more convenient value of \(P \)?

A Fancier Hash Function
Some experimental results indicate that modular hash functions with prime tables sizes are not ideal.
Instead, we can work on designing a really good hash function:

```
jenkinsOneAtATimeHash(String key, int keyLength) {
    hash = 0;
    for (i = 0; i < key_len; i++) {
        hash += key[i];
        hash += (hash << 10);
        hash ^= (hash >> 6);
    }
    hash += (hash << 3);
    hash ^= (hash >> 11);
    hash += (hash << 15);

    return hash % TableSize;
}
```

Collision Resolution
Collision: when two keys map to the same location in the hash table.

How can we cope with collisions?
Separate Chaining

Separate chaining:
All keys that map to the same hash value are kept in a list (or “bucket”).

Analysis of Separate Chaining

The load factor, λ, of a hash table is

$$
\lambda = \frac{\text{no. of elements}}{\text{TableSize}}
$$

Separate chaining: λ = average # of elems per bucket

Average cost of:
– Unsuccessful find?
– Successful find?
– Insert?

Open Addressing

The approach on the previous slide is an example of open addressing:
After a collision, try “next” spot. If there’s another collision, try another, etc.

Finding the next available spot is called probing:

0^{th} probe = $h(k) \mod \text{TableSize}$

1^{st} probe = $(h(k) + f(1)) \mod \text{TableSize}$

2^{nd} probe = $(h(k) + f(2)) \mod \text{TableSize}$

\ldots

i^{th} probe = $(h(k) + f(i)) \mod \text{TableSize}$

f(i) is the probing function. We’ll look at a few…
Terminology Alert!

- **Separate chaining** is sometimes called **open hashing**.
- **Open addressing** is sometimes called **closed hashing**.

Open Addressing Example, Revisited

<table>
<thead>
<tr>
<th>Insert:</th>
<th>38</th>
<th>19</th>
<th>8</th>
<th>109</th>
<th>10</th>
</tr>
</thead>
</table>

Try \(h(K) \)
- If full, try \(h(K) + 1 \).
- If full, try \(h(K) + 2 \).
- If full, try \(h(K) + 3 \).
- Etc…

What is \(f(i) \)?

Linear Probing

\[f(i) = i \]

- Probe sequence:
 - 0\(^{th}\) probe = \(h(K) \mod \text{TableSize} \)
 - 1\(^{st}\) probe = \(h(K) + 1 \mod \text{TableSize} \)
 - 2\(^{nd}\) probe = \(h(K) + 2 \mod \text{TableSize} \)
 - …
 - \(i^{th}\) probe = \(h(K) + i \mod \text{TableSize} \)

Linear Probing – Clustering

[R. Sedgewick]
Analysis of Linear Probing

- For any $\lambda < 1$, linear probing will find an empty slot.
- Expected # of probes (for large table sizes)
 - unsuccessful search: $\frac{1}{2} \left(1 + \frac{1}{(1 - \lambda)^2}\right)$
 - successful search: $\frac{1}{2} \left(1 + \frac{1}{(1 - \lambda)}\right)$
- Linear probing suffers from primary clustering.
- Performance quickly degrades for $\lambda > 1/2$.

Quadratic Probing

- $f(i) = i^2$
- Probe sequence:
 - 0^{th} probe = $h(K) \mod$ TableSize
 - 1^{st} probe = $(h(K) + 1) \mod$ TableSize
 - 2^{nd} probe = $(h(K) + 4) \mod$ TableSize
 - 3^{rd} probe = $(h(K) + 9) \mod$ TableSize
 - ... i^{th} probe = $(h(K) + i^2) \mod$ TableSize

Quadratic Probing Example

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Insert:
- 89
- 18
- 49
- 58
- 79

Another Quadratic Probing Example

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TableSize = 7
$h(K) = K \mod 7$
- insert(76) 76 % 7 =
- insert(40) 40 % 7 =
- insert(48) 48 % 7 =
- insert(5) 5 % 7 =
- insert(55) 55 % 7 =
- insert(47) 47 % 7 =
Quadratic Probing: Success guarantee for $\lambda < \frac{1}{2}$

Assertion #1: If $T = \text{TableSize}$ is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in $T/2$ probes or fewer.

Assertion #2: If the following holds

$$(h(K) + i^2) \mod T \neq (h(K) + j^2) \mod T$$

for prime T and all $0 \leq i, j \leq T/2$ and $i \neq j$, then assertion #1 is true.

We can prove assertion #2 by contradiction. Suppose that for some $i \neq j, 0 \leq i, j \leq T/2$, prime T:

$$(h(K) + i^2) \mod T = (h(K) + j^2) \mod T$$

Quadratic Probing: Properties

• For any $\lambda < \frac{1}{2}$, quadratic probing will find an empty slot; for bigger λ, quadratic probing may find a slot.

• Quadratic probing does not suffer from primary clustering: keys hashing to the same area are not bad.

• But what about keys that hash to the same spot? — Secondary Clustering!

Double Hashing

Idea: given two different (good) hash functions $h(K)$ and $g(K)$, it is unlikely for two keys to collide with both of them.

So...let’s try probing with a second hash function:

$$f(i) = i \ast g(K)$$

• Probe sequence:

 0th probe = $h(K) \mod \text{TableSize}$
 1st probe = $(h(K) + g(K)) \mod \text{TableSize}$
 2nd probe = $(h(K) + 2g(K)) \mod \text{TableSize}$
 3rd probe = $(h(K) + 3g(K)) \mod \text{TableSize}$

 ith probe = $(h(K) + i\ast g(K)) \mod \text{TableSize}$
Double Hashing Example

TableSize = 7
h(K) = K % 7
g(K) = 5 – (K % 5)

Insert(76) 76 % 7 = 6 and 5 - 76 % 5 =
Insert(93) 93 % 7 = 2 and 5 - 93 % 5 =
Insert(40) 40 % 7 = 5 and 5 - 40 % 5 =
Insert(47) 47 % 7 = 5 and 5 - 47 % 5 =
Insert(10) 10 % 7 = 3 and 5 - 10 % 5 =
Insert(55) 55 % 7 = 6 and 5 - 55 % 5 =

Another Example of Double Hashing

Hash Functions:
T = TableSize = 10
h(K) = K % T
g(K) = 1 + (K/T) % (T-1)

Insert these values into the hash table in this order. Resolve any collisions with double hashing:
13
28
33
147
43

Analysis of Double Hashing

• Double hashing is safe for $\lambda < 1$ for at least one case:
 – $h(K) = k \% p$
 – $g(K) = q - (K \% q)$
 – $2 < q < p$, and p, q are primes
• Expected # of probes (for large table sizes)
 – unsuccessful search: $\frac{1}{1-\lambda}$
 – successful search: $\frac{1}{\lambda} \log_e \left(\frac{1}{1-\lambda} \right)$

Deletion in Separate Chaining

How do we delete an element with separate chaining?
Deletion in Open Addressing

Can we do something similar for open addressing?

- Delete
- Find
- Insert

\[h(k) = k \% 7 \]

Linear probing

Delete(23)
Find(59)
Insert(30)

Rehashing

Idea: When the table gets too full, create a bigger table (usually 2x as large) and hash all the items from the original table into the new table.

- When to rehash?
 - Separate chaining: full (\(\lambda = 1 \))
 - Open addressing: half full (\(\lambda = 0.5 \))
 - When an insertion fails
 - Some other threshold
- Cost of a single rehashing?

Rehashing Example

- Separate chaining example:
 \[h_1(x) = x \% 5 \] rehashes to \[h_2(x) = x \% 11. \]

\[\lambda = 1 \]

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
25 & 37 & 83 & 52 \quad 98
\end{array}
\]

\[\lambda = 5/11 \]

\[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
25 & 37 & 83 & 52 & 98
\end{array}
\]

Rehashing Picture

- Starting with table of size 2, double when load factor > 1.
Amortized Analysis of Rehashing

• Cost of inserting n keys is < 3n
• $2^k + 1 \leq n \leq 2^{k+1}$
 – Hashes = n
 – Rehashes = $2 + 2^2 + \ldots + 2^k = 2^{k+1} - 2$
 – Total = $n + 2^{k+1} - 2 < 3n$
• Example
 – n = 33, Total = 33 + 64 –2 = 95 < 99

Hashing Summary

• Hashing is one of the most important data structures.
• Hashing has many applications where operations are limited to find, insert, and delete.
 – But what is the cost of doing, e.g., findMin?
• Can use:
 – Separate chaining (easiest)
 – Open hashing (memory conservation, no linked list management)
 – Java uses separate chaining
• Rehashing has good amortized complexity.
• Hashing can be designed to minimize disk accesses: “extendible hashing.” (See textbook.)