Potential Balance Conditions

What are some candidate balance conditions on BST’s?

1. Left and right subtrees of the root have equal number of nodes

2. Left and right subtrees of the root have equal height

Potential Balance Conditions

3. Left and right subtrees of every node have equal number of nodes

4. Left and right subtrees of every node have equal height

Balancing Trees

- Many algorithms exist for keeping trees balanced
 - Adelson-Velskii and Landis (AVL) trees
 - Splay trees and other self-adjusting trees
 - B-trees and other multiway search trees (for very large trees)

- Today we will talk about AVL trees...
The AVL Tree Data Structure

Ordering property
- Same as for BST

Structural properties
1. Binary tree property
 (0, 1, or 2 children)
2. Heights of left and right subtrees of every node differ by at most 1

Result:
Worst case depth of any node is: $O(\log n)$

Recursive Height Calculation

Recall: height is max number of edges from root to a leaf

What is the height at A?

Note: height(null) = -1

AVL trees or not?

Proving Shallowness Bound

A_h is smallest AVL tree of height h.
Built from A_{h-1} and A_{h-2} attached to a new root.
(Note: these A_h’s are not unique; e.g., could swap children.)
Minimum Size of an AVL Tree

• \(m(h) \) = minimum number of nodes in an AVL tree of height \(h \).
• Base cases
 – \(m(0) = 1 \), \(m(1) = 2 \)
• Induction
 – \(m(h) = m(h-1) + m(h-2) + 1 \)
• Bound solution
 – \(m(h) > \phi^h - 1 \)
 – \(\phi \) is the golden ratio, \((1+\sqrt{5})/2 \)

The Golden Ratio

Since the Renaissance, many artists and architects have proportioned their work (e.g., length:height) to approximate the golden ratio:

\[
\frac{a + b}{a} = \frac{a}{b} = \phi
\]

The golden section:

\[
\frac{a+b}{a} = \phi \]
\[
\text{Set } a=1, \text{ solve for positive } b, \text{ compute ratio: } \phi = \frac{1+\sqrt{5}}{2} \approx 1.62
\]

Note: \(\phi^2 = \left(\frac{1+\sqrt{5}}{2}\right)^2 = \)

Maximum Height of an AVL Tree

Suppose we have \(n \) nodes in an AVL tree of height \(h \).

We can now say:

\(n \geq m(h) > \phi^h - 1 \)

What does this say about the complexity of \(h \)?
Testing the Balance Property

We need to be able to:
1. Track Balance
2. Detect Imbalance
3. Restore Balance

What if we insert(30)?

AVL trees: find, insert

- **AVL find:**
 - same as BST find.

- **AVL insert:**
 - same as BST insert, except may need to “fix” the AVL tree after inserting new value.

We will consider the 4 fundamental insertion cases…

Case #1: left-left insertion (zig-zig)

Insert on left child’s left
Case #1: repair with single rotation

\[X < b < Y < a < Z \]

Height of tree before/after? Effect on Ancestors? Cost?

Case #2: left-right insertion (zig-zag)

\[X < b < Y < a < Z \]

Are we better off now?

Case #2: repair with single rotation

\[X < b < Y < a < Z \]

Are we better off now?
Case #2: trying again

Let’s break subtree Y into pieces:

Insert on left child’s right (at U or V)

Case #2: first rotation

First rotation

Case #2: second rotation

Second rotation

Double rotation, step 1

Height of tree before/after? Effect on Ancestors? Cost?
Case #3: right-left insertion (zig-zag)

Let x be the node where an imbalance occurs. Four cases to consider. The insertion below a is in the

1. left child’s left subtree. (zig-zig)
2. left child’s right subtree. (zig-zag)
3. right child’s left subtree. (zig-zag)
4. right child’s right subtree. (zig-zig)

Cases 1 & 4 are solved by a single rotation:
1. Rotate between a and child

Cases 2 & 3 are solved by a double rotation:
1. Rotate between a’s child and grandchild
2. Rotate between a and a’s new child
Single and Double Rotations:

Inserting what integer values would cause the tree to need a:

1. single rotation?

![Tree diagram](image)

2. double rotation?

3. no rotation?

Insertion procedure

1. Find spot for new key
2. Hang new node there with this key
3. Search back up the path for imbalance
4. If there is an imbalance:
 - cases #1,#4: Perform single rotation and exit
 - cases #2,#3: Perform double rotation and exit

Both rotations keep the subtree height unchanged. Hence only one rotation is sufficient!

More insert examples

Insert(33)

Unbalanced?

How to fix?
More insert examples

Insert(18)

Unbalanced?
How to fix?

Single Rotation (oops!)

Double Rotation (Step #1)

Double Rotation (Step #2)
More insert examples

Insert(3)

Unbalanced?
How to fix?

Insert into an AVL tree: 5, 8, 9, 4, 2, 7, 3, 1

AVL complexity

What is the worst case complexity of an insert?

What is the worst case complexity of a find?