Announcements (4/18/08)

- HW #3 will be assigned this afternoon, due at beginning of class next Friday.
- Project 2A due next Wed. night.

Outline

- Dictionary ADT / Search ADT
- Quick Tree Review
- Binary Search Trees

ADTs Seen So Far

- Stack
 - Push
 - Pop
- Queue
 - Enqueue
 - Dequeue
- Priority Queue
 - Insert
 - DeleteMin

Then there is decreaseKey…
The Dictionary ADT

- Data:
 - a set of (key, value) pairs

- Operations:
 - Insert (key, value)
 - Find (key)
 - Remove (key)

The Dictionary ADT is also called the “Map ADT”

A Modest Few Uses

- Sets
- Dictionaries
- Networks: Router tables
- Operating systems: Page tables
- Compilers: Symbol tables

Probably the most widely used ADT!

Implementations

- Unsorted Linked-list
- Unsorted array
- Sorted array

Binary Trees

- Binary tree is
 - a root
 - left subtree (maybe empty)
 - right subtree (maybe empty)

- Representation:

```
+---+      +---+      +---+      +---+
| A |      | B |      | C |      | D |      | E |
+---+      +---+      +---+      +---+
   |      |      |      |      |      |      |      |      |      |
   +---+      +---+      +---+      +---+
      |      |      |      |      |      |      |      |      |
      +---+      +---+      +---+      +---+
          |      |      |      |      |      |      |      |      |
          +---+      +---+      +---+      +---+

Data
+---+      +---+      +---+      +---+
|   |      |   |      |   |      |   |
| left pointer | right pointer |
+---+      +---+      +---+      +---+
   +---+      +---+      +---+      +---+
      |      |      |      |      |      |      |      |      |
      +---+      +---+      +---+      +---+
```

Binary Tree: Representation

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

Three types:
• Pre-order: Root, left subtree, right subtree
• In-order: Left subtree, root, right subtree
• Post-order: Left subtree, right subtree, root

Inorder Traversal

void traverse(BNode t){
 if (t != NULL)
 traverse (t.left);
 process t.element;
 traverse (t.right);
}

Binary Tree: Special Cases

Full Tree

Complete Tree

Perfect Tree

“List” Tree
Binary Tree: Some Numbers…

Recall: height of a tree = longest path from root to leaf.

For binary tree of height h:
- max # of leaves:
- max # of nodes:
- min # of leaves:
- min # of nodes:

Binary Search Tree Data Structure

- Structural property
 - each node has ≤ 2 children
 - result:
 - storage is small
 - operations are simple

- Order property
 - all keys in left subtree smaller than root’s key
 - all keys in right subtree larger than root’s key
 - result: easy to find any given key

What must I know about what I store?

Example and Counter-Example

Consider the space (forest) of all possible binary trees of N nodes.
- Sum up the depths of every node in that forest and divide by the number of nodes.
- This is the average depth over all nodes over all binary trees of size N. How big is it?

What would the average depth be for a well-balanced tree?
Find in BST, Recursive

```java
Node Find(Object key, Node root) {
    if (root == NULL)
        return NULL;
    if (key < root.key)
        return Find(key, root.left);
    else if (key > root.key)
        return Find(key, root.right);
    else
        return root;
}
```

Find in BST, Iterative

```java
Node Find(Object key, Node root) {
    while (root != NULL && root.key != key) {
        if (key < root.key)
            root = root.left;
        else
            root = root.right;
    }
    return root;
}
```

Bonus: FindMin/FindMax

- Find minimum

- Find maximum

Insert in BST

```
Insert(13)
Insert(8)
Insert(31)
```

Insertions happen only at the leaves – easy!
BuildTree for BST

• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into an initially empty BST.

If inserted in given order, what is the tree? What big-O runtime for this kind of sorted input?

If inserted in reverse order, what is the tree? What big-O runtime for this kind of sorted input?

Deletion in BST

• Removing an item disrupts the tree structure.
• Basic idea: find the node that is to be removed. Then “fix” the tree so that it is still a binary search tree.
• Three cases:
 – node has no children (leaf node)
 – node has one child
 – node has two children

Why might deletion be harder than insertion?
Deletion – The Leaf Case

Delete(17)

Deletion – The One Child Case

Delete(15)

Deletion – The Two Child Case

Delete(5)

What can we replace 5 with?

Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees

Options:
- \textit{succ} from right subtree: \(\text{findMin(t.right)} \)
- \textit{pred} from left subtree: \(\text{findMax(t.left)} \)

Now delete the original node containing \textit{succ} or \textit{pred}
- Leaf or one child case – easy!
Finally...

Balanced BST

Observations
- BST: the shallower the better!
- For a BST with \(n \) nodes
 - Average depth (averaged over all possible insertion orderings) is \(O(\log n) \)
 - Worst case maximum depth is \(O(n) \)
- Simple cases such as insert(1, 2, 3, ..., \(n \)) lead to the worst case scenario

Solution: Require a **Balance Condition** that
1. ensures depth is \(O(\log n) \) – strong enough!
2. is easy to maintain – not too strong!